Концепция построения навигационных систем подвижных наземных объектов | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №9 (89) май-1 2015 г.

Дата публикации: 05.05.2015

Статья просмотрена: 224 раза

Библиографическое описание:

Сурков, В. О. Концепция построения навигационных систем подвижных наземных объектов / В. О. Сурков. — Текст : непосредственный // Молодой ученый. — 2015. — № 9 (89). — С. 302-304. — URL: https://moluch.ru/archive/89/18271/ (дата обращения: 26.04.2024).

Эффективность работы навигационных систем для подвижных наземных объектов (ПНО) как известно зависит от набора датчиков, входящих в её состав и метода обработки информации, используемого для получения необходимых данных.

В процессе своей работы система навигации должна решать следующие задачи:

-        преобразование координат;

-        определение координат местоположения и параметров движения объекта;

-        комплексная обработка информации;

-        коррекция координат местоположения;

-        выдача навигационной информации на индикатор и соответствующим потребителям;

В зависимости от области применения системы навигации появляются требования, которые должны быть выполнены при создании системы. Эти требования могут быть как к системе в целом, так и к её составу и алгоритму обработки данных

Облик навигационной системы для подвижного наземного объекта и предполагаемый состав системы с описанием его элементов были предложены в [1] без описания варианта алгоритма обработки информации. Состав данной системы представлен на рисунке 1.

Рис. 1. Наиболее перспективный состав системы навигации для ПНО

 

В предлагаемой схеме в качестве основных элементов выступают бесплатформенная инерциальная навигационная система (БИНС) и спутниковая радионавигационная система (СРНС). БИНС выполняет роль основной нерадиотехнической системы. Одним из её недостатков является увеличение погрешностей при определении необходимых параметров с течением времени.

СРНС используется как для самостоятельной работы в навигационной системы, так и для коррекции данных от БИНС.

Применение систем сотовой связи в комбинации с СРНС не дает значительного уменьшения погрешностей позиционирования в виду того, что значения погрешностей, полученных при применении данных технологий в 10–100 раз больше, чем значения, полученные при применении спутниковых радионавигационных систем. Это проиллюстрировано в статье [2] и приведены соответствующие значения погрешностей при проведении моделирования. Применение систем сотовой связи в навигационных системах целесообразно лишь при пропадании сигналов от СРНС в качестве резервной системы при использовании реконфигурируемых алгоритмов обработки информации в ЭВМ навигационной системы.

В качестве дополнительных возможно применение таких датчиков, как барометрический высотомер который позволяет обеспечить целостность информации СРНС [3], доплеровский измеритель скорости, датчик скорости и т. д.

В состав подсистем комплекса необходимо включать [5]:

-          специализированные вычислители и микропроцессоры, осуществляющие предварительную обработку информации для подготовки её к использованию в вычислительной системе;

-          дополнительные согласующие устройства, выполняющие преобразование координат и согласование динамических диапазонов сигналов;

В современных условиях одно из требований к навигационным системам заключается в том, что система должна иметь возможность приспосабливаться к изменяющимся условиям окружающей среды и обеспечивать потребителя необходимой навигационной информацией. Изменение условий функционирования навигационной системы может произойти:

-          из-за выхода из строя (отказа) того или иного элемента, что характерно как для радиотехнических так и для нерадиотехнических измерителей;

-          из-за кратковременного пропадания сигнала на выходе того или иного элемента — переход в состояние временного отказа, что характерно только для радиотехнических измерителей и связано с изменением внешних условий, приводящих к уменьшению мощности сигнала на входе приемного устройства измерителя или к его полному кратковременному пропаданию. Характерен кратковременный отказ для среднеорбитальных спутниковых радионавигационных систем ГЛОНАСС (глобальная спутниковая навигационная система) и NAVSTAR (Navstar — Navigational Satellite Time and Ranging — навигационный спутник измерения времени и координат) или по ее фактическому назначению GPS используемых на сегодняшний день практически во всех навигационных системах.

-          наличием различного рода помех, которые могут быть как искусственными, так и естественными.

Для реализации данного направления используют:

-          введение в комплекс резервных элементов. В случае отказа того или иного элемента требуется выполнение такой реконфигурации комплекса, т. е. изменения структуры функционирующих элементов и связей между ними, которая обеспечила бы минимальное снижение эффективности комплекса;

-          применение программной реконфигурации комплекса. В случае выхода из строя части элементов комплекс продолжает функционировать (с меньшей эффективностью) без использования дублирующих элементов. Это достигается путем некоторого (избыточного для нормального режима) расширения возможностей элементов, достигаемого в основном за счет расширения функций программного обеспечения. Наиболее целесообразным при этом является применение информационной избыточности (наличие множества алгоритмов и реализующих их программ для решения одной и той же задачи).

Введение в систему резервных элементов приводит к увеличению массы и габаритных размеров системы, усложнению технического обслуживания и может выполняться при наличии соответствующего обоснования.

Программная реконфигурация системы лишена недостатков первого направления и является более перспективным решением. Для обеспечения программной реконфигурации навигационной системы необходимо организовать не только диагностирование технического состояния элементов комплекса, то есть решать следующие задачи:

1.      Определение отказавшего элемента и времени его отказа;

2.      Снятие с решения функции, выполняемой на элементе;

3.      Передача данной функции другому элементу;

4.      Исключение отказавшего элемента из состава объекта;

5.      Попытка замены отказавшего элемента на резервный;

6.      Исключение связей с отказавшим элементом, запрет доступа к нему.

Но и необходимо обеспечить контроль поля радиосигналов на входах радиотехнических измерителей, то есть в требование 1 необходимо так же включить обеспечение контроля поля радиосигналов на входах приемных устройств радиотехнических измерителей для выявления факта их пропадания с целью определения перехода измерителя в режим кратковременного отказа [9, 10].

Реализовываться программная реконфигурация системы должна в коммутационных устройствах, обеспечивающих перевод её информационной части в другие режимы (в том числе и некомплексные) функционирования при изменении состояния радиоэлектронного поля сигналов, что обеспечит требуемую живучесть комплекса и реконфигурацию структуры информационной системы комплекса под конкретную ситуацию.

В дальнейшем необходимо проанализировать существующие методы контроля технического состояния навигационных систем и методы реконфигурации их информационной части с целью определения соответствия их данным требованиям с указанием недостатков и выбором наиболее подходящего метода.

 

Литература:

 

1.         Сурков В. О. Облик перспективной навигационной системы для подвижного наземного объекта / В. О. Сурков // Молодой ученый. — 2014. — № 12. — С. 107–110.

2.         Иванов А. В. Совместная обработка информации спутниковых радионавигационных систем и наземных сетевых систем в навигационных системах подвижных наземных объектов / Иванов А. В., Гостев А. В., Семенов А. А., Соколовская Л. В. / Радиотехника. — Москва, № 4, с.16–19.

3.         Иванов, А. В. Комплексные оптимальные алгоритмы обработки информации в навигационных системах подвижных наземных объектов с контролем целостности навигационного обеспечения / А. В. Иванов // Радиотехника. — 2010, № 12.

4.         Иванов, А. В. Синтез алгоритмов обработки информации в радиоэлектронных комплексах/ А. В. Иванов, С. Н. Данилов, А. П. Пудовкин//Учебное пособие для вузов. — Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2012. — 80 с

5.         Иванов, А. В. Автономные системы контроля целостности навигационных данных спутниковых радионавигационных систем / А. В. Иванов // Радиотехника. — 2014.– № 7. — С. 55–64.

6.         Иванов, А. В. Алгоритмы обработки информации в навигационных системах наземных подвижных объектов с контролем целостности навигационных данных спутниковых радионавигационных систем/ А. В. Иванов, Д. В. Комраков, В. О. Сурков// Вопросы современной науки и практики «Университет имени В. И. Вернадского». Спецвыпуск — 2014. — № 52. — С. 53–58.

Основные термины (генерируются автоматически): навигационная система, отказавший элемент, система, элемент, GPS, NAVSTAR, информационная часть, кратковременный отказ, программная реконфигурация системы, сотовая связь.


Похожие статьи

Анализ состава навигационных систем для подвижных наземных...

Применение систем сотовой связи в навигационных системах целесообразно лишь при пропадании сигналов от СРНС посредством использования адаптивных алгоритмов обработки информации в ЭВМ навигационной системы.

Облик навигационной системы для подвижного наземного...

Применение систем сотовой связи в навигационных системах целесообразно лишь при пропадании сигналов от СРНС в качестве резервной системы при использовании реконфигурируемых алгоритмов обработки информации в ЭВМ навигационной системы.

Общие принципы построения навигационных систем...

Основные термины (генерируются автоматически): система, дальняя навигация, навигационная система, сотовая связь, измеритель, датчик, автономная

навигационные системы, подвижные наземные объекты, принципы построения, реконфигурация.

Анализ методов контроля целостности спутниковых...

Особенностью функционирования навигационных систем ПНО является зависимость значений погрешностей координат местоположения от наличия данных на выходе приемника СРНС (АП СРНС). Наличие данных на выходе АП СРНС зависит от исправности отдельных элементов...

Снижение влияния условий функционирования на работу...

навигационная система, рабочее созвездие спутников, программная реконфигурация, создание системы контроля, марковская теория, программная реконфигурация системы, изменение условий функционирования, измеритель...

Отказы в системах реального времени | Статья в журнале...

Отказы в системах реального времени. Автор: Горбунов Владимир Владимирович.

Связь с отказами других элементов (узлов, устройств). Независимый (первичный).

При реконфигурации возможно использование многовариантности алгоритмов решения задач.

Информационно-навигационное обеспечение современных...

Часть работ ведется в рамках Федеральной целевой программе по использованию глобальной навигационной спутниковой системы ГЛОНАСС в интересах гражданских потребителей. Основным функциональным элементом в автоматизированных спутниковых...

Проблемы и перспективы глобальной навигационной спутниковой...

Основные термины (генерируются автоматически): GPS, навигационная спутниковая система, Российская Федерация, система, лесное хозяйство, перспектива развития, проблема, рамка новой.

Системы подвижной спутниковой связи с зональным обслуживанием.

Похожие статьи

Анализ состава навигационных систем для подвижных наземных...

Применение систем сотовой связи в навигационных системах целесообразно лишь при пропадании сигналов от СРНС посредством использования адаптивных алгоритмов обработки информации в ЭВМ навигационной системы.

Облик навигационной системы для подвижного наземного...

Применение систем сотовой связи в навигационных системах целесообразно лишь при пропадании сигналов от СРНС в качестве резервной системы при использовании реконфигурируемых алгоритмов обработки информации в ЭВМ навигационной системы.

Общие принципы построения навигационных систем...

Основные термины (генерируются автоматически): система, дальняя навигация, навигационная система, сотовая связь, измеритель, датчик, автономная

навигационные системы, подвижные наземные объекты, принципы построения, реконфигурация.

Анализ методов контроля целостности спутниковых...

Особенностью функционирования навигационных систем ПНО является зависимость значений погрешностей координат местоположения от наличия данных на выходе приемника СРНС (АП СРНС). Наличие данных на выходе АП СРНС зависит от исправности отдельных элементов...

Снижение влияния условий функционирования на работу...

навигационная система, рабочее созвездие спутников, программная реконфигурация, создание системы контроля, марковская теория, программная реконфигурация системы, изменение условий функционирования, измеритель...

Отказы в системах реального времени | Статья в журнале...

Отказы в системах реального времени. Автор: Горбунов Владимир Владимирович.

Связь с отказами других элементов (узлов, устройств). Независимый (первичный).

При реконфигурации возможно использование многовариантности алгоритмов решения задач.

Информационно-навигационное обеспечение современных...

Часть работ ведется в рамках Федеральной целевой программе по использованию глобальной навигационной спутниковой системы ГЛОНАСС в интересах гражданских потребителей. Основным функциональным элементом в автоматизированных спутниковых...

Проблемы и перспективы глобальной навигационной спутниковой...

Основные термины (генерируются автоматически): GPS, навигационная спутниковая система, Российская Федерация, система, лесное хозяйство, перспектива развития, проблема, рамка новой.

Системы подвижной спутниковой связи с зональным обслуживанием.

Задать вопрос