Перспективы создания растительных масел функционального назначения | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 11 мая, печатный экземпляр отправим 15 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №9 (56) сентябрь 2013 г.

Дата публикации: 01.09.2013

Статья просмотрена: 1647 раз

Библиографическое описание:

Лукин, А. А. Перспективы создания растительных масел функционального назначения / А. А. Лукин, С. Г. Пирожинский. — Текст : непосредственный // Молодой ученый. — 2013. — № 9 (56). — С. 57-59. — URL: https://moluch.ru/archive/56/7728/ (дата обращения: 02.05.2024).

Современные технологии получения и переработки масел и жиров базируются на результатах научно-технических исследований, которые проводятся по двум ключевым направлениям:

1. Исследования химического состава и медико-биологических свойств некоторых малоизученных жирных кислот или компонентов неомыляемых фракций растительных масел (терпенов, токотриенолов, фитостеринов и других изопреноидов), которые в перспективе могут быть использованы в качестве физиологически функциональных ингредиентов в продуктах здорового питания.

2. Создание жиров и масел определенного состава с заданными свойствами (дизайн липидов):

Необходимость модификации состава масел вызвана тем, что ни одно из известных пищевых масел не отвечает современным представлениям об идеальном жире:

-          природные жиры и масла не имеют сбалансированного жирнокислотного состава, а значит оптимального для пищевого рациона человека соотношения насыщенных, моно- и полиненасыщенных жирных кислот, в том числе кислот, образующих семейства омега-6 и омега-3, а также мононенасыщенных жирных кислот семейства омега-9;

-          рафинированные масла, при своих неоспоримых вкусовых достоинствах и высоких потребительских характеристиках, бедны фосфолипидами, витамином Е, фитостери-нами, каротиноидами и другими физиологически ценными соединениями; нерафинированные масла содержат указанные микронутриенты, но при этом включают нежелательные сопутствующие вещества, которые снижают пищевую ценность масел или затрудняют их использование в технологиях пищевых продуктов.

Другой причиной, обусловливающей необходимость модификации жирнокислотного состава, является разработка жировых продуктов, не содержащих транс-изомеров жирных кислот, потребление которых является серьезным фактором риска для здоровья человека. Решение этой задачи связано с заменой гидрогенизированных по традиционной технологии жиров, основных источников ТЖК, на натуральные растительные масла, имеющие твердую консистенцию, или их фракции (пальмовое, кокосовое, пальмоядровое), а также с применением таких методов модификации жирнокислотного состава как направленная переэтерификация или гидрогенизация по усовершенствованной технологии с жестким контролем концентрации ТЖК.

С целью направленного изменения состава и свойств жиров и масел в отечественной и зарубежной практике разрабатываются и применяются методы селекции и генной инженерии масличных культур, фракционирование и энзиматическая переэтерификация жиров и масел, смешение (купажирование) масел различных культур, включая нетрадиционные растительные источники [4–5].

Выращивание модифицированных селекционными методами масличных культур без применения приемов генной инженерии. С помощью методов традиционной селекции получены сорта рапса с пониженным содержанием гликозилатов и эруковой кислоты, сорта рапса с повышенным содержанием олеиновой и пальмитиновой кислот, сорта льна с низким содержанием в семенах альфа-линоленовой кислоты. В США выведены сорта подсолнечника с повышенным до 60–70 % содержанием олеиновой кислоты (среднеолеиновые сорта). Высокоолеиновые сорта с содержанием олеиновой кислоты 80 % были впервые получены советскими учеными с применением химического мутагенеза и традиционной селекции.

В нашей стране во ВНИИ масличных культур (ВНИИМК) селекционными методами получены безэруковые сорта рапса, сурепицы, горчицы сарептской. Масло, выделенное из семян этих сортов горчицы, содержит до 75–80 % олеиновой и линолевой кислот. Сравнительно новым для селекционеров направлением является разработка сортов рыжика повышенной масличности, со сниженным содержанием линоленовой кислоты в составе масла.

Применение методов генной инженерии для создания растений, продуцирующих масла заданного типа. Применение методов генной инженерии с целью модификации жирнокислотного состава масел преследует, как правило, решение следующих задач:

-          в соответствии с требованиями современной нутрициологии в масле новых сортов необходимо снизить долю насыщенных кислот и повысить содержание олеиновой кислоты;

-          для улучшения вкуса масла и повышения его окислительной устойчивости должно быть снижено содержание линоленовой кислоты и повышено содержание олеиновой кислоты;

-          для получения масел более плотной консистенции, в меньшей степени нуждающихся в промышленной переработке, особенно в гидрогенизации, проводится модификация растений в направлении увеличения доли насыщенных кислот в составе триглицеридов масел.

С помощью генной инженерии создан новый вид трансгенной сои, масло которой отличается высоким содержанием олеиновой кислоты (55–75 %) при низких концентрациях линоленовой кислоты и насыщенных жирных кислот. В США проводится большая работа с целью получения генномодифицированной кукурузы, масло которой содержит высокие концентрации олеиновой и линолевой кислот, при пониженном содержании линоленовой.

Использование нетрадиционного масличного сырья целесообразно для получения специфических жирных кислот и других липидов, не встречающихся в традиционных масличных растениях или присутствующих там в ничтожном количеств

Перспективным источником считается амарант, масло которою содержит такие физиологически ценные компоненты, как сквален — регулятор липидного и стероидного обмена, предшественник некоторых стероидных гормонов, витамина D и холестерина, способный снижать уровень холестерина в сыворотке крови.

Технологии выделения таких масел предполагают небольшие объемы производства и специально разработанные технологические решения, учитывающие особенности используемого сырья и содержащихся в нем биологически активных компонентов [6, 8].

Применение переэтерификации, целью которой является позиционное перераспределение остатков жирных кислот в молекулах триглицеридов таким образом, чтобы изменились в нужном направлении физические свойства жиров и масел (температypa плавления, кристаллизационные характеристики, твердость, пластичность). Преимуществом переэтерифицированных жиров является отсутствие или минимальное содержание в них транс-изомеров жирных кислот. В качестве сырья для переэтерификации используют сочетания твердого и жидкого масел, например, пальмового и подсолнечного; полностью гидрированных кокосового и пальмоядрового с подсолнечным, соевым, или рапсовым; смесь соевого и других жидких масел с полностью гидрированным соевым маслом или высокоплавкой фракцией пальмового масла [1–3].

Процесс переэтерификации проходит в присутствии химических катализаторов (метилата или этилата натрия) или липолитических ферментов (энзимов). Химическая переэтерификация обеспечивает статистическое перераспределение всех жирнокислотных остатков во всех положениях триглицеридов; в случае ферментативной переэтерификации перераспределение носит позиционно-специфический характер, преимущественно в положении sn-l и sn-3.

Фракционирование липидов, представляющее собой выделение с помощью физических методов триглицеридов определенного жирнокислотного состава, применяется для направленного изменения температуры плавления и других физических свойств некоторых видов растительных масел. В масложировой промышленности широко применяется фракционирование пальмового и пальмоядрового масел. С помощью технологии фракционирования производят разделение фосфолипидов на группы — фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины, фосфатидилинозиты и др.

Смешивание (купажирование) растительных масел является эффективным технологическим приемом достижения заданного соотношения жирных кислот различных типов путем создания двух- или многокомпонентных систем из натуральных растительных масел. В составе смеси используют как рафинированные дезодорированные масла (подсолнечное, соевое, рапсовое, кукурузное, рыжиковое), так и нерафинированные (подсолнечное, льняное, рыжиковое, масло зародышей пшеницы). Для повышения пищевой и биологической ценности купажированных масел их обогащают физиологически функциональными ингредиентами (жирорастворимыми витаминами и фосфолипидами).

Это направление не требует больших финансовых вложений, сложного оборудования и затрат времени, поэтому разработки технологических основ получения смешанных рафинированных и нерафинированных растительных масел с оптимальным или улучшенным составом жирных кислот в настоящее время относятся к наиболее актуальным и перспективным [7].

Литература:

1.         Железной С. А. Получение, фракционирование и идентификация пищевых растительных фосфолипидов: дис.... канд. техн. наук: 05.18.07, 05.18.01 / С. А. Железной. — Воронеж, 2002.

2.         Зайцева Л. В. Водная экстракция масла из подсолнечного жмыха с использованием целлюлоз / Л. В. Зайцева, Т. Л. Наумова, А. П. Нечаев // Хранение и переработка сельскохозяйственного сырья. — 1994. — № 2. — С. 15–17.

3.         Зайцева Л. В. Энзимная и химическая переэтерификация: сравнительный анализ / Л. В. Зайцева // Пищевая промышленность. — 2011. — № 6. — С. 2–5.

4.         Лукин А. А. Функциональные свойства подсолнечного масла / А. А. Лукин // Молодой ученый. — 2013. — № 6. — С. 68–70.

5.         Лукин А. А. Характеристика и показатели качества некоторых видов растительных масел / А. А. Лукин, С. Г. Пирожинский // Молодой ученый. — 2013. — № 7. — С. 58–60.

6.         Комаров А. В. Комплексные исследования рафинации жиров и разработка эффективных методов переработки: дис.... канд. техн. наук: 05.18.06 / А. В. Комаров. — М., 2003.

7.         Скорюкин А. Н. Технология получения и применения купажированных жировых продуктов с оптимальным составом жирнокислотным составом ПНЖК: дис.... канд. техн. наук: 05.18.06 / А. Н. Скорюкин. — М., 2004.

8.         Щербин В. В. Биохимическое обоснование влияния жирнокислотного состава смесей растительных масел на их биологическую ценность и окислительную стойкость при хранении: дис.... канд. техн. наук: 03.00.04 / В. В. Щербин. — Краснодар, 2005.

Основные термины (генерируются автоматически): масло, генная инженерия, кислота, олеиновая кислота, линоленовая кислота, сорт рапса, пониженное содержание, содержание, США, традиционная селекция.


Похожие статьи

Показатели качества рапсового масла, полученного в условиях...

Маслобезэруковых сортов рапса по содержанию олеиновой кислоты становиться сходным с оливковым, а сумма нежелательных насыщенных кислот в два раза ниже, чем в оливковом масле.

Характеристика и показатели качества некоторых видов...

Из-за доминирования в составе триглицеридов оливкового масла мононенасыщенной олеиновой кислоты, пониженного содержания линолевой и незначительного количества триненасыщенной линоленовой, а также благодаря присутствию токоферола...

Генетические основы селекции гибридов подсолнечника...

олеиновая кислота, высокое содержание, масло, подсолнечное масло, гибрид, кислота, состав, состав токоферолов, Темп, традиционное масло.

Биохимический состав маслосемян рыжика ярового при хранении

яровой рыжик, олеиновая кислота, кислота, линоленовая кислота, масло рыжика, процесс хранения, хранение семян, липидный комплекс, растительное масло, условие хранения.

Изучение жирнокислотного состава и противораковой активности...

Содержание линолевой кислоты в гексановом экстракте тоже значительно (11.90 %).

Установлено, что в амаранте содержится большое количество жирных кислот, в том числе ненасыщенных (α-линоленовая кислота, линолевая кислота) и насыщенных жирных кислот...

Особенности масла из тыквы сорта «Атлант», выращенной...

Олеиновая%. Линолевая %. Линоленовая%.

Основные термины (генерируются автоматически): семя тыквы, тыквенное масло, Узбекистан, сравнение, выход масла, растительное масло, пищевое производство, масло, кислота, Хорезмская область.

Проблема использования подсолнечного масла в качестве сырья...

Семь линий характеризовались повышенным содержанием олеиновой кислоты более 60%, три из которых (ВК876Ol, tph1, tph2 max; ВК541Ol, tph2; ВК541Ol) были высокоолеиновыми выше 85%.

Функциональные свойства подсолнечного масла

В семенах высокоолеинового подсолнечника содержание олеиновой кислоты (мононенасыщенная жирная кислота) составляет не менее 82 %, в то время как в семенах обычного — 20–27 %.

Биология, возделывание и качество маслосемян крамбе...

Следует отметить, что содержание полиненасыщенных жирных кислот (линолевой (ω-6) и α-линоленовой (ω-3)) в изучаемых сортообразцах крамбе невысокое и составляет 7,77-9,98 и 7,06-8,49 %, соответственно. Соотношение ω-3/ω-6 кислотам в масле крамбе составляет...

Похожие статьи

Показатели качества рапсового масла, полученного в условиях...

Маслобезэруковых сортов рапса по содержанию олеиновой кислоты становиться сходным с оливковым, а сумма нежелательных насыщенных кислот в два раза ниже, чем в оливковом масле.

Характеристика и показатели качества некоторых видов...

Из-за доминирования в составе триглицеридов оливкового масла мононенасыщенной олеиновой кислоты, пониженного содержания линолевой и незначительного количества триненасыщенной линоленовой, а также благодаря присутствию токоферола...

Генетические основы селекции гибридов подсолнечника...

олеиновая кислота, высокое содержание, масло, подсолнечное масло, гибрид, кислота, состав, состав токоферолов, Темп, традиционное масло.

Биохимический состав маслосемян рыжика ярового при хранении

яровой рыжик, олеиновая кислота, кислота, линоленовая кислота, масло рыжика, процесс хранения, хранение семян, липидный комплекс, растительное масло, условие хранения.

Изучение жирнокислотного состава и противораковой активности...

Содержание линолевой кислоты в гексановом экстракте тоже значительно (11.90 %).

Установлено, что в амаранте содержится большое количество жирных кислот, в том числе ненасыщенных (α-линоленовая кислота, линолевая кислота) и насыщенных жирных кислот...

Особенности масла из тыквы сорта «Атлант», выращенной...

Олеиновая%. Линолевая %. Линоленовая%.

Основные термины (генерируются автоматически): семя тыквы, тыквенное масло, Узбекистан, сравнение, выход масла, растительное масло, пищевое производство, масло, кислота, Хорезмская область.

Проблема использования подсолнечного масла в качестве сырья...

Семь линий характеризовались повышенным содержанием олеиновой кислоты более 60%, три из которых (ВК876Ol, tph1, tph2 max; ВК541Ol, tph2; ВК541Ol) были высокоолеиновыми выше 85%.

Функциональные свойства подсолнечного масла

В семенах высокоолеинового подсолнечника содержание олеиновой кислоты (мононенасыщенная жирная кислота) составляет не менее 82 %, в то время как в семенах обычного — 20–27 %.

Биология, возделывание и качество маслосемян крамбе...

Следует отметить, что содержание полиненасыщенных жирных кислот (линолевой (ω-6) и α-линоленовой (ω-3)) в изучаемых сортообразцах крамбе невысокое и составляет 7,77-9,98 и 7,06-8,49 %, соответственно. Соотношение ω-3/ω-6 кислотам в масле крамбе составляет...

Задать вопрос