Обоснование эффективности применения пиролизной установки для отопления теплиц | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 18 мая, печатный экземпляр отправим 22 мая.

Опубликовать статью в журнале

Авторы: , ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №19 (99) октябрь-1 2015 г.

Дата публикации: 05.10.2015

Статья просмотрена: 672 раза

Библиографическое описание:

Узаков, Г. Н. Обоснование эффективности применения пиролизной установки для отопления теплиц / Г. Н. Узаков, Х. А. Давланов, Ю. Г. Узакова. — Текст : непосредственный // Молодой ученый. — 2015. — № 19 (99). — С. 219-223. — URL: https://moluch.ru/archive/99/22325/ (дата обращения: 04.05.2024).

Рассмотрены возможности применения пиролизной установки для отопления теплиц. Даны результаты расчетов экономической эффективности применения пиролизной установки в автономных системах отопления теплиц.

Ключевые слова: эффективность, биомасса, пиролиз, биотоплива, отопление.

 

Разработана и экспериментально исследована пиролизная установка для термической переработки биомассы и местных органических отходов [1]. В результате пиролиза растительной биомассы образуется горючий газ, высокоэнергетические жидкие продукты и кокс. С энергетической точки зрения три выходных продуктов пиролиза биомассы: кокс (уголь), смола (бионефть) и биогаз являются энергетическими ценными веществами. Эти вещества имеют высокую калорийность как альтернативного топлива. Вместе со многими выгодами от пиролизной установки мы получем большое количество тепла, которое можно использовать в разных телоэнергетических целях. При прямом сжигании полученных альтернативных топлив можно получить теплоту, использование в системах отопления и горячего водоснабжения дает большие экономии традиционных топливно-энергетических ресурсов. Например, в прямом сжигании только полученного 1 м3 биогаза в газовых водогрейных отопительных котлах дает 5–7 кВт/ч или 18–25,2 МДж тепловой энергии. Эти цифры указывают на то, что мы имеем очень большие запасы тепловой энергии, которая просто выбрасываются и приносят огромный экологический вред в атмосферу.

Поэтому нами предлагается тепловую энергию от пиролизной установки, полезно использовать в сельском хозяйстве в следующих направлениях:

-          отопление сельских жилых домов и помещений, фермерских домов и полевых станов, обеспечение альтернативным топливом;

-          горячее водоснабжение для бытовых нужд;

-          отопление теплиц и хранилищ в зимой;

-          сушка плодов и фруктов и т. п.

В целях сравнительного анализа нами исследованы потребление традиционного топлива (природного газа) в период отопления (ноябрь-март 2015 года) жилого дома с отопительной площадью 200 м2, которая израсходована 2600 м3 природного газа. Расход газа в месяц 2600:5=520 м3, в среднем в сутки были сожжены 18–20 м3 природного газа. Таким образом, 1 м3 газ обеспечить теплом около 10 м2 жилой площади в сутки (все измерения ежедневно измерялись электронным газовым счетчиком марки Novator). Аналогичные измерении произвели для теплицы с полезной площадью 200 м2 с пленочным покрытием в условиях города Карши. В отопление теплицы 200м2 зимой для создания требуемого внутреннего микроклимата были израсходованы в сутки до 100–120 м3 природного газа. То есть 1 м3 природным газом можно обеспечить теплом 1,66 м2 площади теплицы. Или на 1 м2 площади теплицы израсходуется около 0,5–0,6 м3 природного газа. Как видно, из проведенных исследований и расчетов сооружения защищенного грунта-теплицы являются биолого-теплотехническим устройствам, которые требуют огромные количество традиционного топлива для отопления. Сама теплица является пассивной солнечной отопительной системой, однако при любом регионе нашей Республики только днем 30–35 % отопительную нагрузку можно покрыть за счет прямого использования солнечной энергии в зависимости от метеорологических условий конкретного года. Поэтому в настоящее время решение проблемы энергообеспеченности теплиц является актуальной. Один из вариантов решения этой проблемы является применение пиролизных установок с эффективным использованием энергии биомассы при их термической переработки. Предлагается использовать пиролизную установку в небольших фермерских хозяйствах в целях отопления жилых помещений и теплиц. Для этого необходимо знать потребности в тепловой энергии теплицы и произвести теплотехнические расчеты. Ниже приведены результаты теплотехнического расчета гелиотеплицы с полезной площадью 200 м2.

К важным энергетическим характеристикам гелиотеплиц относятся коэффициенты ограждения  и аккумулирования тепла энергии солнечного излучения , приведенный коэффициент теплопередачи ограждения , тепловая мощность системы отопления, тепловые потери, приток солнечной радиации внутрь теплиц, расход топлива на отопление и. т.д. Тепловую мощность системы отопления теплицы, следует определять в результате решения уравнений теплового баланса с учетом происходящего тепломассообмена на поверхности почвы, ограждений и растений. Тепловой режим теплицы рассматривается с участием находящейся в ней биомассы и влагообмена. Делается это для неблагоприятных ночных условий эксплуатации теплицы.

Практически мощность системы отопления теплицы можно определить по уравнению

                                                                                                  (1)

где  — теплопотери через наружные ограждения — стены и покрытие (скаты);  — теплопотери через грунт, рассчитанные по известному способу с разделением его площади на зоны (ориентировочно  составляют около 0,2 );  — теплозатраты на нагревание инфильтрующегося воздуха.

Известно, что тепловые потери гелиотеплицы зависят от коэффициента ограждения, который вычисляли по соотношению

                                                                                                               (2)

где  — общая светопрозрачная поверхность ограждения;  — инвентарная (полезная) площадь гелиотеплицы.

Применив упрощенный способ расчета теплового баланса теплицы, пренебрегая влиянием тепловых потоков через защищенный грунт, можем определить тепловую мощность системы отопления [2].

                                                  (3)

или

                                                                                                           (4)

где – тепловая мощность системы отопления, – потери тепла через ограждение, –потери тепла вследствие воздухообмена,  — приток солнечной радиации внутрь теплиц за отопительный период, К — коэффициент теплопередачи ограждения, Кпр=FогрK/Fи, Кпр — приведенный коэффициент треплопередачи ограждения; tв — расчетная температура воздуха внутри теплицы, 17,2 оС; tн — среднесуточная температура наружного воздуха за отапливаемый период (ноябрь — март), 4,6 оС; Кинф — коэффициент инфильтрации, равный 1,1…1,2 [2].

Приток солнечной радиации внутри теплиц за отопительный период:

,                                                                                                   (5)

где,  — среднесуточное значение падающей за отопительный период суммарной солнечной радиации;  — коэффициент лучепоглощения поверхности листьев растений и почвы;  — коэффициент пропускания солнечной радиации светопрозрачного ограждения теплицы;  — площадь пола теплицы; - продолжительность отопительного периода.

Если , тогда при ясной погоде не требуется дополнительный обогрев теплицы с применением традиционных систем отопления. Если , тогда требуется дополнительный обогрев теплицы с использованием органического топлива в котельной. В табл. 1. приведены результаты расчетов по определению тепловых потерь и среднемесячных суточных показателей энергообеспеченности гелиотеплицы площадью 200 м2 в условиях г. Карши, для отдельных периодов отопительного сезона. В нашем случае коэффициент ограждения , среднее значение коэффициента теплопередачи светопрозрачного ограждения К=6,5 Вт/(м2·оС); , .

Таблица 1

Среднемесячные суточные показатели энергообеспеченности гелиотеплицы в условиях ясной погоды для г. Карши

Дата

, кДж/(м2·день)

 кДж/(м2·день)

 кДж/(м2·день)

15/XI

10,6

8777,13

6899,56

1877,57

15/XII

4,8

15656,51

5151,46

10505,05

15/I

3,6

17079,83

5062,18

12017,65

14/II

5,3

15063,46

5981,76

9081,7

15/III

10,1

9370,18

7928,06

1442,12

15/IV

17,9

118,61

11856,38

-

 

Мощность отопительной системы для тепличной части сооружения определяется по формуле:           (6)

где,  — тепловой поток вентиляционных выбросов холодильной камеры;  — тепловая мощность горячей воды, полученная при утилизации тепла уходящих газов.

Сезонный расход топлива (природного газа) на отопление теплицы полезной площадью 200 м2 определяли по формуле:  (7)

где 1,15 — коэффициент, учитывающий потери тепла в трубопроводах; τ — продолжительность отопительного периода для г. Карши, равная 132 суток; – рабочая низшая теплота сгорания топлива (природной газ Шуртанского месторождения), равна 8626 Ккал/нм3, η–коэффициент полезного действия котельной 0,8. В соответствии с формулой (7) расход газа в отопительной период при ночном режиме составил 15563,08 м3 следовательно, для поддержания нормальной температуры внутри теплицы нужно 117,9 м3/сутки. Результаты расчета расходов топлива на отопление гелиотеплицы приведены в табл.2.

Таблица 2

Расход топлива на отопление гелиотеплицы с площадью 200 м2 в условиях г. Карши

Месяцы

Расход топлива на отопление гелиотеплицы при ясной погоде (при дневной работе теплицы), м3/мес.

Расход топлива на отопление гелиотеплицы при ночном режиме, м3/мес.

XI

449,12

2099,55

XII

2512,87

3745,14

I

2874,70

4085,61

II

2027,57

3363,06

III

344,96

2241,41

Всего за сезон

8209,22

15563,08

 

Для оценки эффективности применения пиролизной установки для теплоснабжения локальных потребителей определены потребности в тепловой энергии и биогазе систем отопления гелиотеплиц в условиях г. Карши (табл. 3). Анализ расчетных и эксплуатационных показателей гелиотеплиц в условиях г. Карши показывают, что пиролизная установка ёмкостью биореактора с 0,5 м3 полностью обеспечивает тепловую нагрузку на отопления при дневном режиме гелиотеплиц с полезной площадью 200 м2. Таким образом, применение даже одного продукта пиролиза биомассы (только биогаза) позволяет экономить в отопление гелиотеплиц с площадью 200 м2 до 12500 м3 традиционного топлива (природного газа) или 15,35 тонна угля в отопительный сезон.

Выше приведенные результаты расчетов и исследований соответствует к отопительному периоду (ноябрь-март). Если учитываем, что пиролизная установка вырабатывает альтернативного топлива (биогаз, уголь и жидкое топливо) в течение 350 дней ежегодно, еще 15 дней отводится на их профилактическое обслуживание и текущий ремонт установки. Тогда экономия условного топлива в год за счет выработанного биогаза, угля и жидкого топлива можно определить по формуле:

∆B=Qб ×350/29,31 + Qж ×350/29,31+ Qуг ×350/29,31                                                (8)

Где, Qб, Qж, и Qуг — выработка пиролизной установкой полезной энергии за счет полученного биогаза, жидкого и твердого альтернативного топлива в сутке, МДж.

Qб =120 м3 /cут. х Qн р = 120х25 МДж/м3=3000 МДж/сут.

Qн р = 25 МДж/м3 — теплота сгорания полученного биогаза.

Аналогичные расчеты для жидкого и твердого топлива при переработки экскременты крупного рогатого скота:

Qж =300 кг /cут. х Qн р = 300х25 МДж/кг=7500 МДж/сут.

Qуг =180 кг /cут. х Qн р = 180х30 МДж/кг=5400 МДж/сут.

Общая экономия условного топлива за счет круглогодичного использования пиролизной установки для выработки альтернативного твердого, газобразного и жидкого топлива: ∆B=3000× 350/29,31 + 7500 ×350/29,31+ 5400 ×350/29,31 =189867 кг условного топлива или 189,87 тонна условного топлива.

Таблица 3

Потребность в тепловой энергии, биогазе и других природных органических топлив для отопления гелиотеплицы при дневном режиме в условиях г. Карши (с полезной площадью 50, 120 и 200 м2)

Показатели

Отапливаемая площадь гелиотеплицы, м2

50

120

200

Тепловая энергия, МДж/год

75000–120000

195000–240000

360000–450000

Биогаз, м3:

в год (в сезон)

в сутки

 

3000–4800

20–32

 

7800–9600

52–64

 

14400–18000

96–120

Природный газ, в м3

в период отопления:

в сутки:

 

2083–3334

14–22,2

 

5416–6667

36–45

 

10000–12500

66,7–83

Уголь, в кг:

в период отопления:

в сутки:

 

2558–4094

17–27

 

6653–8188

44–54,6

 

12282–15353

82–102

Дрова, в кг:

в период отопления:

в сутки:

 

4687–7500

31–50

 

12187–15000

81–100

 

22500–28125

150–187

 

Произведем оценочный расчет для определения экономической эффективности использования пиролизной установки для фермерского хозяйства. Разработанная установка в год производить: а) биогаза — 42000 м3;б) жидкого биотоплива — 105000 кг; г) твердого топлива — 63000 кг.

Стоимость 1 тонн угля — 100 000 сум, тогда 63 х 100 000 = 6 300 000 сум;

Стоимость жидкого биотоплива: 105х103 х 1000 = 105 000 000 сум;

Стоимость газа 42000 · 208,92 = 8 774 640 сум (с 1.10.2015г).

Капитальные затраты на изготовление и монтаж предложенной установки составляет 30 млн. сум. с учетом установки комплекта теплотехнических измерительных приборов. Годовые эксплуатационные затраты складываются от затрат топлива на собственные нужды, на воды, электроэнергии и на обслуживание. Всего эксплуатационные затраты составляет около 27 млн. сумм. Чистый доход составить: (105 000 000+6 300 000+8 774 640)-27 000 000=93 000 000 сум.

Срок окупаемости капитальных вложений: 30 000 000:93 000 000= 0,32 года. Коэффициент окупаемости: 1/0,32=3,12. Если принимать, что в течение 5 лет нормативный коэффициент окупаемости капитальных вложений будет находится на уровне Е=0,2.

Тогда, интегральный экономический эффект в течение 5 лет составить: Эинт=(93 000 000х1,0+93 000 000х 0,83 + 93 000 000 х 0,69 +93 000 000 х 0,58 + 93 000000х0,48) — 30 000 000 = 303 000 000 сум.

Дисконтированный срок окупаемости составить:

LRR=30 000 000/ [(93 000 000х1,0+93 000 000х 0,83 + 93 000 000 х 0,69 +93 000 000 х 0,58 + 93 000000х0,48)/5]=0,5 года. С учетом инфляционных рисков срок окупаемости установки можно принимать 1-м годам.

Таким образом, оценочный технико-экономический расчет показывает, что использование пиролизных установок является энергосберегающей, экономически эффективной технологией для автономного топливо- и энергоснабжения фермерских хозяйств, теплиц и частных домов фермеров.

 

Литература:

 

1.                  Узаков Г. Н., Раббимов Р. Т., Давланов Х. А., Алиярова Л. А., Узакова Ю. Г. Расчет теплотехнических и конструктивно-технологических параметров пиролизной установки для термической переработки биомассы. //Молодой ученый № 18 (77). — 2014., с.303–306.

2.                  Узаков Г. Н. Энергоэффективные системы теплохладоснабжения плодоовощехранилищ. — Германия: г. Саарбрюккен, LAP Lambert Academic Publishing, 2013г. — 268 с.

Основные термины (генерируются автоматически): природный газ, отопительный период, тепловая энергия, отопление гелиотеплицы, полезная площадь, III, период отопления, расход топлива, солнечная радиация, условное топливо.


Похожие статьи

Теплотехнический метод расчета гелиотеплиц с использованием...

Водонагреватель в летний период при солнечной радиации 700–800 Вт/м2 и наружной

Из общего потребления тепловой энергии в ночное время расходуется 75 %, днем 25 %.

Гелиотеплицы и их тепловые режимы. Из-ство «ФАН» РУз г. Ташкент, -1977 г. -80 с.

Сельский солнечный дом с гелиотеплицами, солнечными...

Водонагреватель в летний период при солнечной радиации

Из общего потребления тепловой энергии в ночное время расходуется 75 %, днем 25 %.

К вопросу энергетического режима гелиотеплиц, обогреваемых непосредственным сжиганием в них природного газа.

Снижение затрат энергии в теплохладоснабжении...

Показатель «энергетическая эффективность здания» характеризуется величиной удельного расхода тепловой энергии на отопление и вентиляцию здания в холодный период года. Однако этот показатель для комбинированной системы «овощехранилище – гелиотеплица»...

Использование низкопотенциальной солнечной энергии...

Водонагреватель в летний период солнечной радиации 700–800 Вт/м2 и наружной

Годовая расход природного газа. QТ1=898 м3/год QТ1=1485 м3/год. Условного топлива.

Комбинированное использование солнечной энергии и тепловых отходов в гелиотеплице.

Автоматизация расчета дополнительного источника тепла

Из этого следует, что расход тепла на отопление в течение года изменяется от минимального в летний период (возможно его отсутствие) до максимального в зимний период.

Методика расчета температурного режима гелиотеплицы с подпочвенными аккумуляторами тепла.

Сельский дом с гелиотеплицами и водонагревательной...

Водонагреватель в летний период солнечной радиации 700–800 Вт/м2 и наружной

Тепловая мощность коллектора солнечной энергии (КСЭ) определяется по формуле

Сельский солнечный дом с гелиотеплицами, солнечными батареями и водонагревательной установкой.

Способы получения электрики и тепла из солнечного излучения

Солнечная энергия для обогрева, охлаждения, вентиляции и технологических нужд может быть использована для покрытия части расходов на энергию.

Солнечная тепловая энергия в качестве активного солнечного отопления.

Методика расчета температурного режима гелиотеплицы...

Полезная информация. Спецвыпуски.

где Qпад — солнечная радиация, падающая на светопрозрачной поверхность гелиотеплицы, кДж / м2ч

Модель динамического режима системы солнечного отопления с водяным аккумулятором тепла.

Определение теплотехнических свойств почвы в гелиотеплицах

Частично или полностью становится ненужным технический обогрев, что дает значительную экономию топлива, следовательно, себестоимость продукции уменьшается.

В гелиотеплицах солнечная энергия аккумулируется в верхнем и аккумулирующем слоях почвы.

Похожие статьи

Теплотехнический метод расчета гелиотеплиц с использованием...

Водонагреватель в летний период при солнечной радиации 700–800 Вт/м2 и наружной

Из общего потребления тепловой энергии в ночное время расходуется 75 %, днем 25 %.

Гелиотеплицы и их тепловые режимы. Из-ство «ФАН» РУз г. Ташкент, -1977 г. -80 с.

Сельский солнечный дом с гелиотеплицами, солнечными...

Водонагреватель в летний период при солнечной радиации

Из общего потребления тепловой энергии в ночное время расходуется 75 %, днем 25 %.

К вопросу энергетического режима гелиотеплиц, обогреваемых непосредственным сжиганием в них природного газа.

Снижение затрат энергии в теплохладоснабжении...

Показатель «энергетическая эффективность здания» характеризуется величиной удельного расхода тепловой энергии на отопление и вентиляцию здания в холодный период года. Однако этот показатель для комбинированной системы «овощехранилище – гелиотеплица»...

Использование низкопотенциальной солнечной энергии...

Водонагреватель в летний период солнечной радиации 700–800 Вт/м2 и наружной

Годовая расход природного газа. QТ1=898 м3/год QТ1=1485 м3/год. Условного топлива.

Комбинированное использование солнечной энергии и тепловых отходов в гелиотеплице.

Автоматизация расчета дополнительного источника тепла

Из этого следует, что расход тепла на отопление в течение года изменяется от минимального в летний период (возможно его отсутствие) до максимального в зимний период.

Методика расчета температурного режима гелиотеплицы с подпочвенными аккумуляторами тепла.

Сельский дом с гелиотеплицами и водонагревательной...

Водонагреватель в летний период солнечной радиации 700–800 Вт/м2 и наружной

Тепловая мощность коллектора солнечной энергии (КСЭ) определяется по формуле

Сельский солнечный дом с гелиотеплицами, солнечными батареями и водонагревательной установкой.

Способы получения электрики и тепла из солнечного излучения

Солнечная энергия для обогрева, охлаждения, вентиляции и технологических нужд может быть использована для покрытия части расходов на энергию.

Солнечная тепловая энергия в качестве активного солнечного отопления.

Методика расчета температурного режима гелиотеплицы...

Полезная информация. Спецвыпуски.

где Qпад — солнечная радиация, падающая на светопрозрачной поверхность гелиотеплицы, кДж / м2ч

Модель динамического режима системы солнечного отопления с водяным аккумулятором тепла.

Определение теплотехнических свойств почвы в гелиотеплицах

Частично или полностью становится ненужным технический обогрев, что дает значительную экономию топлива, следовательно, себестоимость продукции уменьшается.

В гелиотеплицах солнечная энергия аккумулируется в верхнем и аккумулирующем слоях почвы.

Задать вопрос