Разработка блока управления для стиральной машины | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 18 мая, печатный экземпляр отправим 22 мая.

Опубликовать статью в журнале

Библиографическое описание:

Прасолов, А. С. Разработка блока управления для стиральной машины / А. С. Прасолов, А. А. Кащеев, Д. О. Пасечник, Д. И. Хайрутдинов. — Текст : непосредственный // Молодой ученый. — 2016. — № 15 (119). — С. 80-84. — URL: https://moluch.ru/archive/119/33061/ (дата обращения: 05.05.2024).



В данной работе разрабатывается один из вариантов блока управления стиральной машиной. Основой для этого блока послужит микроконтроллер 8051 фирмы Intel.

Ключевые слова: блок управления, контроллер, блок схема

  1. Разработка блока управления.

Параметры блока управления определяются исходя из технического задания:

  1. Установка программы стирки с помощью клавиатуры;
  2. Жидкокристаллический индикатор;
  3. Контроль закрытия двери, температуры воды в баке и протечки.

Для выполнения первого пункта необходимо включить в состав устройства клавиатуру. Для выполнения условий достаточно клавиатуры из пяти кнопок для выбора программы стирки и отдельно расположенной кнопки включения устройства. В разрабатываемом устройстве используются кнопки без фиксации PB-22E88, т. к. они обладают подходящими габаритами, невысокой стоимостью и предназначены для монтажа на плату. Для включения/выключения устройства используется переключатель ASW-09–12.

Для индикации будет использоваться жидкокристаллический индикатор ITM-1601 рассчитанный на 16 знакомест. Причинами, по которым был выбран именно этот индикатор, являются:

− контроллер индикатора — HD44780. Контроллер HD44780 фирмы Hitachi фактически является промышленным стандартом и широко применяется при производстве алфавитно-цифровых ЖКИ-модулей. Аналоги этого контроллера или совместимые с ним по интерфейсу и командному языку микросхемы, выпускают множество фирм, среди которых: Epson, Toshiba, Sanyo, Samsung, Philips. Еще большее число фирм производят ЖКИ-модули на базе данных контроллеров. Таким образом, устройства на базе этого контроллера обладают не сложным и легко настраиваемым интерфейсом, легки в управлении, надежны в работе, а также легко совместимы с другими устройствами;

− индикатор обладает встроенным знакогенератором;

− небольшие масса и габариты;

− невысокая стоимость и широкое распространение, что обеспечивает легкодоступность.

Для контроля закрытия двери используется геркон REEDSW-2.

В качестве температурного датчика используется термопара, закрепленную на стенке бака. Основные преимущества термопары относительно других вариантов температурных датчиков: термопары являются небольшими, точными и относительно недорогими устройствами, обладающими высокой линейностью функции передачи. К минусам можно отнести невысокий уровень выходного сигнала, требующий усиления и компенсацию температуры холодного спая. Для выбора типа термопары нужно оценить поведение коэффициента Зеебека термопары в диапазоне температур предполагаемых измерений, и выбрать тип термопары с наибольшей линейностью. На рисунке 1 приведены зависимости коэффициента Зеебека термопары от температуры для основных типов термопар.

Рис. 1. Зависимости коэффициента Зеебека от температуры

Как видно, наиболее подходящим является тип S.

В качестве датчика протечки используется геркон, встроенный в поплавок, находящийся в нижней части машины. Если вода превышает допустимый уровень, поплавок всплывает и замыкает контакты датчика.

1.1. Структурная схема прибора.

Структурная схема устройства представлена на рисунке 2.

Рис. 2. Схема структурная, где: 1 — датчик температуры; 2 — датчик протечки; 3 — датчик закрытия двери; 4 — жидкокристаллический индикатор; 5 — микроконтроллер; 6 — клавиатура; 7 — блок питания

Сигналы с датчиков поступают на микроконтроллер. Клавиатура используется для управления устройством. Индикатор выводит информацию о процессах, происходящих в устройстве. Блок питания обеспечивает все составные части устройства питанием с необходимыми параметрами.

1.2. Принципиальная электрическая схема.

По функциональной схеме, описанной в предыдущем пункте, построена схема электрическая принципиальная, представленная на рисунке 3.

Рис. 3. Схема электрическая принципиальная

Разъем X1 — штепсельная вилка, через которую на устройство поступает питание из бытовой электросети с параметрами 220 В 50 Гц. Напряжение с такими параметрами используется в данном устройстве для питания нагревателя и электродвигателя. Для питания цифровой части устройства напряжение сначала преобразуется на трансформаторе Tr1, со вторичной обмотки которого снимается напряжение 9В. Далее в цепи расположен диодный мост VD1, выпрямляющий данное напряжение. Микросхема DA2 — стабилизатор напряжения 7805 — снижает значения напряжения до 5В, необходимых для питания микроконтроллера и индикатора. Кнопка S1 это выключатель устройства. HG1 — жидкокристаллический индикатор, выводящий информацию о текущем режиме работы стиральной машины. Потенциометр R5 позволяет управлять контрастностью индикатора.

Конденсаторы C1, C2 и С4 предназначены для устранения помех в цепи питания. Резистор R4 с конденсатором C3 образуют цепь начального сброса микроконтроллера. Кнопка S2 предназначена для принудительного сброса. Кварцевый резонатор Z1 с конденсаторами С5 и С6 используются для синхронизации микроконтроллера. Кнопки S3-S7 это клавиатура для выбора режима работы устройства. S9 и S10 — герконы, выполняющие роль датчиков закрытия двери и протечки соответственно. S7 — геркон, используемый в качестве датчика уровня воды. Операционный усилитель ОР1 усиливает сигнал с термопары, чтобы он мог быть считан АЦП DA1, который переводит сигнал в цифровую форму и передает его на вход микроконтроллера. Резисторы R2 и R3 образуют цепь обратной связи, задающей коэффициент усиления операционного усилителя. На ножку Vref АЦП приходит опорное напряжение, равное напряжению питания. На вывод CLK приходят синхроимпульсы. Ножка CS — выбор чипа, активный уровень — логический 0.

Для управления нагрузкой (нагревателем, электродвигателем и насосом) используется схема управления с использованием симистора. Достоинствами данной схемы управления являются высокая надежность, отсутствие акустического шума, отсутствие износа элементов, обеспечение гальванической развязки.

Для расчета номинала резисторов R8 и R20 воспользуемся формулой:

R = (Vcc-Uкэ-Uu-UHL1)/Iu1,

где: Vcc напряжение питания; Uкэ падение напряжения на транзисторе; Uu — падение напряжения на оптроне; UHL1 — падение напряжения на динисторе; Iu1 — ток через оптрон.

Подставив численные значения получим значение номинала резисторов около 2кОм.

Для расчета номинала резисторов R6 и R17 воспользуемся формулой

R≤(U0-Uбэ)/Iб,

где:U0 — напряжение логического нуля; Uбэ — падение напряжения на переходе база-эмиттер; Iб — ток базы.

Подставив численные значения было получено значение номинала резисторов не более 10 Ом.

Номинал резисторов R9…R12, R14…R16, R19 рассчитывается по формуле:

R≤(Vcc-Umin)/Iвх,

где: Vcc напряжение питания, Umin — минимальное напряжение логической единицы микроконтроллера, Iвх — величина входного тока микроконтроллера.

Для микроконтроллера 8051 вышеперечисленные величины равны 5В, 2,4В и 0,1 мА соответственно. Следовательно, номинал резисторов не более 26кОм.

  1. Блок-схема алгоритма программы.

Блок-схема изображена на рисунке 4.

Программа начинается с инициализации портов ввода/вывода и таймера/счетчика микроконтроллера. Затем таймер/счетчик обнуляется и программа переходит к опросу клавиатуры. Если нажата одна из пяти кнопок, то установленная температура и время стирки устанавливаются равными значениям для соответствующего режима стирки. Программа циклически опрашивает кнопки до тех пор, пока одна из них не будет нажата.

Если режим стирки задан, программа переходит к проверке закрытия дверцы. Если дверца открыта, то на индикатор выводится сообщение с предупреждением и программа переходит к началу алгоритма. Если дверца закрыта, то запускается таймер/счетчик, на экран выводится информация о параметрах режима стирки: температура и время, прошедшее после запуска стирки. После этого программа проверяет наличие протечки. Если есть сигнал от датчика протечки, включается сливной насос, машина сливает воду и выводит на экран сообщение с предупреждением, после чего переходит к началу алгоритма. Если протечки нет, то программа переходит к проверки уровня. Если максимальный уровень не достигнут — открывается клапан. После этого считывается сигнал с термопары, преобразуется и сравнивается с установленным значением. Если температура меньше установленного значения, то подается питание на нагреватель. После этого включается электродвигатель. Затем проверяется значение таймера/счетчика. Если время, предусмотренное выбранным режимом стирки, прошло, выключается нагреватель, электродвигатель и сливается вода и программа переходит к началу алгоритма. Если же время не вышло, программа переходит к пункту алгоритма с выводом данных о режиме стирке.

Рис. 4. Блок-схема

Заключение.

Таким образом был разработан блок управления стиральной машиной с пятью режимами стирки, защитой от протечек, контролем закрытия дверцы, оснащенный жидкокристаллическим индикатором, термодатчиком, датчиком уровня воды и датчиком протечки. Представлены функциональная и электрическая принципиальная схемы устройства, алгоритм программы микроконтроллера.

Литература:

  1. Угрюмов Е. П. Цифровая схемотехника / Е. П. Угрюмов. — СПб: БХВ-Петербург, 2010 г. — 798 с.
  2. Белов А. В. Конструирование устройств на микроконтроллерах. / А. В. Белов — СПб: Наука и Техника, 2005 г. — 256 с.
  3. Кестер У. Методы практического конструирования при нормировании сигнала/ Уолт Кестер; пер. с англ. Горшков Б. Л. — СПб: Автэкс, 2008 г. — 311 с.
Основные термины (генерируются автоматически): жидкокристаллический индикатор, падение напряжения, датчик протечки, напряжение питания, начало алгоритма, программа, стиральная машина, CLK, невысокая стоимость, операционный усилитель.


Ключевые слова

блок управления, контроллер, блок схема

Похожие статьи

Простейший операционный усилитель на полевых транзисторах...

– Vout выход. – Vdd напряжение питание (положительный потенциал).

Имеется множество классификаций операционных усилителей, начиная от типов входных/выходных каскадов, заканчивая схемой включения и элементами «обвеса» усилителя.

Методики измерения норм электрических параметров микросхем...

В результате входное напряжение высокого уровня упадет ниже минимально допустимой и тест будет провален.

4) Измерить ток на выводах питания, когда устройство выполняет тестовый алгоритм

Стабилизатор напряжения на базе магнитного усилителя...

В зависимости от сопротивления токам четных гармоник возможны два режима работы магнитных усилителей. В случае малого сопротивления, когда токи четных гармоник проходят свободно и практически не создают падений напряжения в цепи управления...

Электрохимические методы и приборы для определения...

На катод накладывается опорное напряжение -500 мв от источника постоянного тока

Датчик подключен к измерительно-задающему устройству через микросхему — операционный усилитель

Перед началом работы датчик калибруют, погрузив его в буферный раствор (0,5...

Устройство для автоматического полива растений на платформе...

Чтобы соединить сенсор с Arduino и начать считывать его показания, нужно

Напряжение питания 3,3–5 В. Возвращаемый сигнал при питании от 5 В: 0–4,2 В. Отобразив эти значения на 10-битный

Для вывода показаний датчика используется четырехразрядный индикатор.

Разработка сервисного диагностического стенда...

Данные сигналы имеют постоянное напряжение (0–5) В. Далее происходит их преобразование с помощью делителей и наибольший по напряжению сигнал поступает на второй операционный усилитель ОУ (А2), а наименьший сигнал на первый ОУ (А1)...

Разработка архитектуры стенда для проведения диагностики...

Операционный усилитель подключен к источнику биполярного напряжения, а также к реле, отвечающему за выбор режима измерения (измерение тока или

Каналы питания через реле, управляемые драйвером реле, подключены к датчику тока и резистивному шунту.

Создание робота автономного движения по линии

В качестве источника питания использовался литий-полимерный аккумулятор напряжением 12 В и ёмкостью 2 200 мАч.

Схема алгоритма работы платы-датчика представлена на рис.4 [3]. Рис. 4. Схема работы платы-датчика. Перейдем к описанию программы.

Похожие статьи

Простейший операционный усилитель на полевых транзисторах...

– Vout выход. – Vdd напряжение питание (положительный потенциал).

Имеется множество классификаций операционных усилителей, начиная от типов входных/выходных каскадов, заканчивая схемой включения и элементами «обвеса» усилителя.

Методики измерения норм электрических параметров микросхем...

В результате входное напряжение высокого уровня упадет ниже минимально допустимой и тест будет провален.

4) Измерить ток на выводах питания, когда устройство выполняет тестовый алгоритм

Стабилизатор напряжения на базе магнитного усилителя...

В зависимости от сопротивления токам четных гармоник возможны два режима работы магнитных усилителей. В случае малого сопротивления, когда токи четных гармоник проходят свободно и практически не создают падений напряжения в цепи управления...

Электрохимические методы и приборы для определения...

На катод накладывается опорное напряжение -500 мв от источника постоянного тока

Датчик подключен к измерительно-задающему устройству через микросхему — операционный усилитель

Перед началом работы датчик калибруют, погрузив его в буферный раствор (0,5...

Устройство для автоматического полива растений на платформе...

Чтобы соединить сенсор с Arduino и начать считывать его показания, нужно

Напряжение питания 3,3–5 В. Возвращаемый сигнал при питании от 5 В: 0–4,2 В. Отобразив эти значения на 10-битный

Для вывода показаний датчика используется четырехразрядный индикатор.

Разработка сервисного диагностического стенда...

Данные сигналы имеют постоянное напряжение (0–5) В. Далее происходит их преобразование с помощью делителей и наибольший по напряжению сигнал поступает на второй операционный усилитель ОУ (А2), а наименьший сигнал на первый ОУ (А1)...

Разработка архитектуры стенда для проведения диагностики...

Операционный усилитель подключен к источнику биполярного напряжения, а также к реле, отвечающему за выбор режима измерения (измерение тока или

Каналы питания через реле, управляемые драйвером реле, подключены к датчику тока и резистивному шунту.

Создание робота автономного движения по линии

В качестве источника питания использовался литий-полимерный аккумулятор напряжением 12 В и ёмкостью 2 200 мАч.

Схема алгоритма работы платы-датчика представлена на рис.4 [3]. Рис. 4. Схема работы платы-датчика. Перейдем к описанию программы.

Задать вопрос