Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Непрерывные аналоги закона распределения простых чисел

14. Общие вопросы технических наук
63
Поделиться
Библиографическое описание
Оразов, Мамед. Непрерывные аналоги закона распределения простых чисел / Мамед Оразов. — Текст : непосредственный // Современные тенденции технических наук : материалы I Междунар. науч. конф. (г. Уфа, октябрь 2011 г.). — Уфа : Лето, 2011. — С. 76-77. — URL: https://moluch.ru/conf/tech/archive/5/958/.

Работа содержит достаточные условия, которым должно удовлетворять преобразование Меллина неубывающей функции , чтобы была справедлива асимптотическая формула при . Из полученных результатов, в частности, при здесь содержится асимптотический закон распределения простых чисел.

Work contains sufficient conditions with which should satisfy transformation Меllin of not decreasing function that it was fair Asymptotic formulae at . From the received results, in particular, at here contains asymptotic the law of distribution of simple numbers.

Пусть − неубывающая функция, определенная при

Поставим вопрос о том, какие минимальные ограничения на функцию обеспечивают асимптотическую формулу

− аналог закона простых чисел.

В работе доказывается следующая лемма.

Лемма 1. Пусть интеграл сходится при ,. Если производная равномерно продолжима на прямую , исключая точку ,

при , то функция не обращается в нуль в замкнутой полуплоскости .

Мы воспользовались тем, что из равномерной продолжимости следует равномерная продолжимость , так как при

,

что влечет за собой равномерную продолжимость функции , и следовательно, оценку

Далее из равенства следует

.

Функция очевидно неубывающая.

Применим к ней сформулированную ниже теорему Икеара.

Теорема. (Теорема Икеара [2]). Пусть неубывающая функция, определенная при .

Если функция

равномерно продолжима на прямую , то при .

В нашем случае

,

так что из предыдущего вытекает, что условия теоремы Икеара выполнены. Согласно этой теоремы

Отсюда следует

,

откуда

Теорема доказана.

Литература:
  1. Ингам А.Е. Распределение простых чисел.− ОНТИ, 1936.
  2. Райков Д.А. Обобщение теоремы Икеара−Ландау.− Матем. сб. 8(45), №3, 1938, 559-568.
  3. Постников А.Г. Упрощение элементарного доказательства А.Сельберга асимптотического закона распределения простых чисел.− УМН, т.х., 1955, №4.

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью

Молодой учёный