Методологические основы оценки качества имитационных моделей объектов управления | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 27 апреля, печатный экземпляр отправим 1 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №8 (88) апрель-2 2015 г.

Дата публикации: 15.04.2015

Статья просмотрена: 213 раз

Библиографическое описание:

Нугаев, А. С. Методологические основы оценки качества имитационных моделей объектов управления / А. С. Нугаев, А. М. Данилов. — Текст : непосредственный // Молодой ученый. — 2015. — № 8 (88). — С. 279-281. — URL: https://moluch.ru/archive/88/17531/ (дата обращения: 19.04.2024).

Определяются инженерно-психологические аспекты, непосредственно связанные с оценкой качества имитационного моделирования объектов управления, описываемых системой обыкновенных дифференциальных уравнений в нормальной форме Коши.

Ключевые слова: транспортные системы, подготовка операторов, качество подготовки операторов, имитационное моделирование объекта управления, критерии качества.

 

Основное требование к обучающим комплексам для подготовки операторов эргатических транспортных систем состоит в обеспечении формирования стиля и навыков управления оператора реальным объектом в условиях, когда объект заменяется на имитационную модель [1…3]. Для многоцелевых систем практически отсутствует возможность точного описания объекта его моделью, особенно при противоречивых критериях. Нельзя добиться стопроцентной адекватности модели и реального объекта. Поэтому всегда можно говорить лишь о некоторой заданной степени адекватности, достаточной для решения некоторых основных видов деятельности оператора. Так, навыки управления органами управления летательным аппаратом могут быть сформированы с помощью имитационной модели, весьма далекой от требуемой адекватности. Например, при формировании вполне конкретного стиля управления реальным летательным аппаратом с конкретными динамическими характеристиками первичные навыки обращения с органами управления летательным аппаратом в известной степени такие же, как и при управлении другими техническими объектами. Отсюда следует первый важный вывод: характеристики имитационной модели должны выбираться, исходя из конкретных задач, которые должны решаться на обучающем комплексе.

Непосредственно из этого вытекает необходимость решения другой задачи: как описать навыки и стиль управления, что под этим понимать и как осуществить формализацию этих понятий? Ясно, что решение этой задачи невозможно без формулировки и описания понятия «управляющее воздействие оператора». В настоящее время обучающие комплексы для транспортных систем представляют собой сложные технические устройства, использующие математическую модель объекта управления (полученную исходя из заданной степени точности). Обычно на временном интервале  хорошим приближением является модель, описываемая обыкновенными дифференциальными уравнениями в нормальной форме Коши. В векторной форме модель представляется в виде:

;                                                                                                 (1)

 — соответственно векторы состояния и управления; ; - матрицы, определяемые техническими параметрами объекта. В (1) предполагается непрерывность по совокупности переменных  и непрерывная дифференцируемость по  и . Поведение вектора  может быть произвольным; уравнение (1) определяет управляемый процесс. Ход управляемого процесса определяется на некотором интервале , если на этом интервале вектор  задан в виде

;                                                                                                                   (2)

.                                                                                                                (3)

            Вектор-функция  является программным управлением, а  — законом управления. Как видим, каждому выбору вектора управления  и каждому начальному состоянию  при  по (1) соответствует временная последовательность состояний , которой определяется программное движение системы .

Система управлений в соответствии с (1) при заданных начальных условиях имеет вид

,

.   (4)

Таким образом, движение объекта описывается уравнением (1) в некоторой области изменения параметров, определяемой эксплуатационным диапазоном его применения. Решение (4) характеризует опорные траектории, соответствующие заданным начальным условиям при выбранном векторе управлении . Оценка точности воспроизведения характеристик объекта в обучающем комплексе может производиться по соотношению:

;

,                                                                                                   (5)

где  — характеристики реального объекта, полученные при его натурных испытаниях по регламентированным методам;  — расчетные характеристики объекта при тех же начальных условиях, что и в (1).

Для объекта с системой автоматического управления  представляется в виде

,                                                                                              (6)

 -соответственно матрицы управления по обратной связи и по вектору программных сигналов . Решения (1) и (6) для момента времени  имеют вид:

,                                                                    (7)

,.

Выражением (7) описываются характеристики контура «объект — САУ».

Как правило, разработка имитационных моделей осуществляется при ограниченных сведениях и неполной информации о динамических свойствах имитируемого объекта. Поэтому нередко точность математической модели (1) по критерию (5) оказывается недостаточной. Необходимы структурная и параметрическая идентификации объекта (основная техническая проблема синтеза обучающих комплексов, определяющая эффективность и качество подготовки операторов).

Обучающий комплекс в настоящее время строится по модульному принципу, каждый из которых является моделью отдельных подсистем. Однако надо помнить, что соединение даже совершенных имитаторов в единую иерархическую структуру может привести к получению суммарных погрешностей моделирования, искажающих воспринимаемую оператором приборную, визуальную, акселерационную и др. информацию. Пришли ко второй основной технической проблеме синтеза обучающих комплексов. Указанные две проблемы являются определяющими при формировании навыка управления на обучающем комплексе. Задача сводится к сравнению двух эргатических систем: «оператор — модель объекта», «оператор — реальный объект». Модель каждой из указанных эргатических систем будет вместо уравнения (1) описываться уравнением вида:

,,                                                                     (8)

 — соответственно матрицы параметров информационной модели и оператора.

Если уравнения (1), (3) описывают движения объекта (модели) в контуре управления с САУ, то (9) характеризует эргатическую систему «оператор — объект» («оператор — информационная модель») в режиме ручного управления. Матрицей  учитываются особенности восприятия и переработки оператором поступающей информации и формирования нам этой основе управляющих движений. Однако невозможно предопределить реакцию оператора на информацию, получаемую в искусственных условиях, когда при обучении используется модель объекта. Это и является основным психофизиологическим аспектом проблемы синтеза обучающих комплексов, влияющим на формирование навыков управления.

Указанные выше аспекты являются методологической основой проектирования обучающих комплексов, которые неоднократно использовались при разработке тренажеров различного назначения [4…6].

 

Литература:

 

1.                  E. Budylina, A. Danilov, I. Garkina. Control of multiobjective complex systems / Contemporary Engineering Sciences, Vol. 8, 2015, no. 10, 441–445. http://dx.doi.org/10.12988/ces.2015.5276.

2.                  Данилов А. М., Гарькина И. А., Дулатов Р. Л. Ретроспективная идентификация сложных систем // Региональная архитектура и строительство. — 2015. — № 1(22) –С.130 -136.

3.                  Будылина Е. А., Гарькина И. А., Данилов А. М., Дулатов Р. Л. Структурная и параметрическая идентификация сложных эргатических систем / Фундаментальные исследования. –№ 2. -2015. — С.919–922.

4.                  Будылина Е. А., Гарькина И. А., Данилов А. М., Тюкалов Д. Е. Параметрическая идентификация эргатической системы с помехами /Современные проблемы науки и образования. — 2015. — № 1; URL:http://www.science-education.ru/121–17681

5.                  E. Budylina, A. Danilov. Approximation of aerodynamic coefficients in the flight dynamics simulator  / Contemporary Engineering Sciences, Vol. 8, 2015, no. 10, 415–420. http://dx.doi.org/10.12988/ces.2015.5256.

6.                  A.Danilov, I.Garkina. Coherence function in analysis and synthesis of complex systems / Contemporary Engineering Sciences, Vol. 8, 2015, no. 9, 375–380. http://dx.doi.org/10.12988/ces.2015.5236.

Основные термины (генерируются автоматически): обучающий комплекс, имитационная модель, модель, система, имитационное моделирование, информационная модель, летательный аппарат, математическая модель, нормальная форма, основная техническая проблема.


Ключевые слова

критерии качества., критерии качества, подготовка операторов, транспортные системы, качество подготовки операторов, имитационное моделирование объекта управления

Похожие статьи

Ключевые аспекты имитационного моделирования сложных...

Имитационное моделирование сложных систем — способ построения моделей таких систем, описывающих поведение процессов. Данную модель возможно реализовать любое число раз.

1. Введение. Задачи имитационного моделирования ведение.

Основные термины (генерируются автоматически): имитационное моделирование, GPSS, массовое обслуживание, система, моделирование, одноканальная модель, имитационная модель, многоканальная модель, модель, средство.

Проблемы применения имитационного моделирования...

Имитационное моделирование – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью, описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе.

Имитационное моделирование как главный инструмент...

Основные термины (генерируются автоматически): Имитационное моделирование, математическая модель, имитационная модель, Казахстан, поведение системы, модель, дискретно-событийное моделирование, системная динамика, PERT, вид моделирования.

Применение математического моделирования при...

Основные термины (генерируются автоматически): модель принятия решений, модель, конструкционный принцип, параметр модели, проблема

Классификация имитационных моделей при проектировании систем технической эксплуатации автомобильного транспорта.

Визуализация математических имитационных сетевых моделей...

В работе рассмотрен способ представления и получения геометрического потока в системе имитационного моделирования ГТД DVIGw. Показана актуальность применения данного потока и способы развития системы в данном направлении...

Информационная модель систем гусеничной машины для...

В статье представлена методика разработки информационной модели, которая позволяет организовать имитационное моделирование в разработанном программном обеспечении тренажёрных комплексов.

Построение имитационной модели JavaEE веб-приложения по...

Ключевые слова: имитационное моделирование, архитектура, системы массового обслуживания.

Далее по экспериментальным данным была создана имитационная модель веб-приложения.

Практические приёмы моделирования экономических систем

Основные термины (генерируются автоматически): модель, система, математическая модель, оптимальное управление, реальная система, имитационная модель, экономическая система, моделирование, системная динамика, процесс.

Похожие статьи

Ключевые аспекты имитационного моделирования сложных...

Имитационное моделирование сложных систем — способ построения моделей таких систем, описывающих поведение процессов. Данную модель возможно реализовать любое число раз.

1. Введение. Задачи имитационного моделирования ведение.

Основные термины (генерируются автоматически): имитационное моделирование, GPSS, массовое обслуживание, система, моделирование, одноканальная модель, имитационная модель, многоканальная модель, модель, средство.

Проблемы применения имитационного моделирования...

Имитационное моделирование – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью, описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе.

Имитационное моделирование как главный инструмент...

Основные термины (генерируются автоматически): Имитационное моделирование, математическая модель, имитационная модель, Казахстан, поведение системы, модель, дискретно-событийное моделирование, системная динамика, PERT, вид моделирования.

Применение математического моделирования при...

Основные термины (генерируются автоматически): модель принятия решений, модель, конструкционный принцип, параметр модели, проблема

Классификация имитационных моделей при проектировании систем технической эксплуатации автомобильного транспорта.

Визуализация математических имитационных сетевых моделей...

В работе рассмотрен способ представления и получения геометрического потока в системе имитационного моделирования ГТД DVIGw. Показана актуальность применения данного потока и способы развития системы в данном направлении...

Информационная модель систем гусеничной машины для...

В статье представлена методика разработки информационной модели, которая позволяет организовать имитационное моделирование в разработанном программном обеспечении тренажёрных комплексов.

Построение имитационной модели JavaEE веб-приложения по...

Ключевые слова: имитационное моделирование, архитектура, системы массового обслуживания.

Далее по экспериментальным данным была создана имитационная модель веб-приложения.

Практические приёмы моделирования экономических систем

Основные термины (генерируются автоматически): модель, система, математическая модель, оптимальное управление, реальная система, имитационная модель, экономическая система, моделирование, системная динамика, процесс.

Задать вопрос