Отправьте статью сегодня! Журнал выйдет 19 июля, печатный экземпляр отправим 23 июля
Опубликовать статью

Молодой учёный

Выбор абсорбционной колонны для осушки нефтяного газа

Научный руководитель
Технические науки
01.04.2024
292
Поделиться
Библиографическое описание
Козеев, В. В. Выбор абсорбционной колонны для осушки нефтяного газа / В. В. Козеев, Р. И. Джусупкалиева, Н. М. Жумагалиева. — Текст : непосредственный // Молодой ученый. — 2024. — № 14 (513). — С. 23-27. — URL: https://moluch.ru/archive/513/112503/.


В статье представлены принципы работы абсорбционных колонн для осушки попутного нефтяного газа. Рассмотрены различные виды насадок адсорбционных колонн. Целью работы является оптимальный выбор насадок, преимущества и недостатки.

Ключевые слова: осушка, абсорбция, абсорбер, нефтяной газ.

Осушка природного газа — это процесс извлечения влаги из попутного нефтяного газа с целью для дальнейшего использования и предотвращения гидратообразования при его транспортировке. Одним из наиболее важных элементов оборудования для осушки газа является Абсорбер.

Аппараты, в которых проводят процессы абсорбции называют абсорберами, а десорбции — десорберами [1]. Абсорбер, также называемая контактной колонна, представляет собой место, где природный газ контактирует с триэтелингликолем системы с целью высвобождения увлеченной воды и углеводородов. Этот гликоль «поглощает» воду из газа и выносит ее из абсорбера.

В своей работе мы хотели остановится на различных конструкциях абсорберов (рис.1), предлагаемых компанией Кимрай. Внутри этих колон производители устанавливают 3 различных типа внутренних конструктивных систем, облегчающих этот процесс:

– Регулярная насадка

– Нерегулярная насадка

– Колпачковая тарелка

Типы абсорберов для осушки газа [5]

Рис. 1. Типы абсорберов для осушки газа [5]

Давайте разберем, что такое насадка.

Абсорбционные колонны состоят из насадки, которая бывает различных форм и материалов. Он обеспечивает поверхность, на которой может происходить контакт и поглощение. Насадка обеспечивает эффективный процесс абсорбции благодаря большей площади контакта.

Для эффективной абсорбции абсорбционной колонны материалу насадки необходимо достаточно места, чтобы жидкость могла проходить сквозь нее и не вызывать падения давления. В то же время он также должен обеспечивать необходимый контакт между жидкостью и газом.

Разберем два типа дизайна насадки: регулярные и нерегулярные (рис.2).

Регулярные и нерегулярные насадки [5]

Рис. 2. Регулярные и нерегулярные насадки [5]

Регулярная насадка

В регулярной насадке (рис. 3) используются большие фиксированные насадочные конструкции, которые придают жидкости определенную форму. Этот материал содержит отверстия, канавки, рифление и другие фактурные элементы, позволяющие увеличить площадь поверхности.

Каждый слой регулярной насадки в блоке абсорбера простирается на весь диаметр колонны и повернут на 90° относительно предыдущего. Диаметр насадки может быть практически разного размера.

Принцип работы регулярной насадки при осушке природного газа.

Абсорбер с регулярными насадками [5]

Рис. 3. Абсорбер с регулярными насадками [5]

Гликоль равномерно распределяется в верхней части колонны и стекает вниз через регулярную насадку, покрывая поверхность при движении.

В зависимости от размера колонны можно использовать распределительный лоток для повторного равномерного распределения гликоля по насадке. Это предотвращает попадание гликоля только на одну сторону абсорбера.

Природный газ поступает в колонну снизу и движется вверх, контактируя с гликолем на пути вниз, который поглощает воду из газа.

Нерегулярная насадка

В абсорбере с нерегулярной насадкой (рис. 4) колонна заполнена нержавеющими кольцами Палля или керамическими седлами. Эта нерегулярная насадка хаотичным образом заполняет колонну.

Сухой гликоль, поступающий в верхнюю часть колонны, должен течь по всей насадке, что позволяет равномерно распределять гликоль по колонне. Газ поступает в нижнюю часть колонны и движется вверх, контактируя с гликолем на пути вниз, который поглощает влагу из газа.

Если насадка должна быть выше 10 футов для удовлетворения потребностей в удалении воды, можно использовать распределительный лоток для сбора гликоля и его равномерного распределения по колонне, чтобы избежать образования каналов.

Абсорбер с нерегулярными насадками [5]

Рис. 4. Абсорбер с нерегулярными насадками [5]

Нерегулярная насадка дешевле и ее легче загружать и вынимать, чем регулярную упаковку.

Как нерегулярные, так и регулярные насадочные колонны имеют меньший перепад давления и лучше справляются с пенящимися и агрессивными жидкостями, чем тарельчатые колонны.

Абсорбер с колпачковыми тарелками

Третий и наиболее распространенный тип абсорбционной колонны представляет собой тарельчатую конструкцию с пузырьковыми крышками (рис.5). В этой конструкции горизонтальные металлические лотки уложены друг на друга через каждые 24 дюйма в колонне.

Сухой гликоль поступает в колонну сверху и разливается по пузырьковым крышкам. Газ поднимается из-под них и просачивается через отверстия в крышках.

Уровень гликоля удерживается на каждом лотке с помощью перегородки, прежде чем он пройдет через сливную трубу к следующему лотку.

Абсорбер с колпачковыми тарелками [5].

Рис. 5. Абсорбер с колпачковыми тарелками [5].

С каждым лотком гликоль поглощает больше водяного пара из газа. Когда гликоль выходит из нижней части колонны, он насыщается водой и называется влажным гликолем.

Газ, идущий вверх, становится суше после каждой тарелки, поскольку пары воды поглощаются гликолем.

Тарельчатые колонны обеспечивают высокую осушку газа, чем насадочные колонны, и лучше справляются с более низкими нормами жидкости и твердых частиц.

Показатели производительности

Производительность абсорбера в первую очередь определяется скоростью газа через колонну. Для больших объемов газа потребуются колонны большего размера; поэтому двумя вариантами являются регулярные конструкции или конструкции тарелок.

Коэффициент регулирования абсорбера представляет собой рабочий диапазон сосуда как отношение максимального расхода к минимальной производительности.

Например, если колонна рассчитана на максимальный расход 10 мм3/сут, а минимум на 2 мм3/сут, коэффициент снижения будет 5:1 [5].

В тарельчатой колонне как правило, более экономичным оказывается вариант работы с повышенным числом тарелок, в сравнении с расчетным, и сравнительно небольшим удельным расходом абсорбента, несколько превышающим минимальный его расход [1], [2], [3], [4]. В тарельчатой колонне слишком большая скорость нарушит структуру потока гликоля и разрушит жидкостные уплотнения в точках, где сливные стаканы тарелок встречаются с тарелками. В результате гликоль вымывается из колонны вместе с газом.

Из-за конструкции регулярной насадки скорости газа могут быть выше, чем в тарельчатых колоннах, поскольку гликоль не будет вымываться из колонны при высоких скоростях газа.

Литература:

1. Дытнерский Ю. И. Процессы и аппараты химической технологии. Часть 2, Москва, Химия 1995.-368с.

2. Дытнерский Ю. И. Процессы и аппараты химической технологии. Часть 1-М.: Химия, 1995.-400с.

3. Бекиров Т. М. Первичная переработка природных газов. — М.: Химия, 1987.-256с.

4. Балыбердина И. Т. Физические методы переработки и использования газа. -М.: Недра, 1988.-248с.

5. https://kimray.com/training

Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
осушка
абсорбция
абсорбер
нефтяной газ
Молодой учёный №14 (513) апрель 2024 г.
Скачать часть журнала с этой статьей(стр. 23-27):
Часть 1 (стр. 1-65)
Расположение в файле:
стр. 1стр. 23-27стр. 65

Молодой учёный