Отправьте статью сегодня! Журнал выйдет 2 августа, печатный экземпляр отправим 6 августа
Опубликовать статью

Молодой учёный

Свойства решений многоточечной задачи для гиперболического уравнения

Математика
11.12.2023
11
Поделиться
Библиографическое описание
Гурбанмаммедов, Нурмухаммет. Свойства решений многоточечной задачи для гиперболического уравнения / Нурмухаммет Гурбанмаммедов, П. Н. Гурбанмаммедов. — Текст : непосредственный // Молодой ученый. — 2023. — № 49 (496). — С. 1-4. — URL: https://moluch.ru/archive/496/108857/.


В работе рассматривали и доказали однозначную разрешимость следующих задач:

В данной работе рассматриваем следующую задачу:

и находятся достаточные условия однозначной разрешимости и непрерывная зависимость решений от параметров, где произвольные точки,

1. Однозначная разрешимость решения задачи (1) — (4)

Для однозначной разрешимости задачи используется норма в пространстве :

Теорема 1. Пусть функции удовлетворяют условию

где

Если сушествует , удовлетворяющая неравенству

,

тогда задача (1) — (4) имеет единственное решение в пространстве .

Доказательство. Задача (1)–(4) эквивалентна интегральному уравнению

Правую часть уравнения обозначим через оператор :

Докажем, что . Имеем:

.

Теперь докажем, что оператор сжимающий имеем:

где

Доказательство теоремы следует из принципа сжимающих операторов.

2. Непрерывная зависимость решений от параметров

Теперь рассмотрим следующие задачи:

где параметр.

Теорема 2. Пусть функции удовлетворяют условию

где

Если существует , удовлетворяющая неравенству , то в пространстве единственное решение задачи непрерывно зависит от параметра.

Доказательство. При фиксированной однозначная разрешимость задачи доказана в теореме 1. Для доказательство теоремы 2 достаточно доказать непрерывную зависимость решений от параметра.

Задача эквивалентна интегрофункциональному уравнению:

Обозначим через , решение уравнения соотвествующее параметрам и т. е.:

Используя условия теоремы 2 из уравнения , имеем:

.

Используя норму , имеем:

Отсюда следует утверждение теоремы 2.

Теоремы 1, 2 верны для следующих задач:

Литература:

  1. Shan S. M. On the exponential Growth of solutions to non-linear hyperbolic eQuations //Internat.J.Math. u Math.Sci.Vol. 12. №.3 (1989) 539–546.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №49 (496) декабрь 2023 г.
Скачать часть журнала с этой статьей(стр. 1-4):
Часть 1 (стр. 1-75)
Расположение в файле:
стр. 1стр. 1-4стр. 75

Молодой учёный