Обоснование выбора принципиальной технологической схемы промысловой очистки газа от сероводорода | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №15 (305) апрель 2020 г.

Дата публикации: 08.04.2020

Статья просмотрена: 97 раз

Библиографическое описание:

Чурикова, Л. А. Обоснование выбора принципиальной технологической схемы промысловой очистки газа от сероводорода / Л. А. Чурикова, С. А. Тасмагамбетова. — Текст : непосредственный // Молодой ученый. — 2020. — № 15 (305). — С. 151-154. — URL: https://moluch.ru/archive/305/68664/ (дата обращения: 20.04.2024).



Статья посвящена вопросу решения важной задачи — обоснование выбора технологии промысловой подготовки малосернистых газов. Авторы предлагают в качестве решения такой задачи — рассмотреть применение установки для очистки малосернистого газа от сероводорода углеводородным конденсатом в составе промысловой установки низкотемпературной сепарации газа (НТС). Предлагаемая технология сероочистки газа на основе углеводородного конденсата, сможет обеспечить в условиях Чинаревского месторождения необходимое качество очищенного газа.

Ключевые слова: сероводород, диоксида углерода, углеводородный конденсат, установка низкотемпературной сепарации, промысловая очистка газа.

Обязательным требованием, которое предъявляется к технологии промысловой очистки малосернистых газов от сероводорода, является отсутствие выбросов в атмосферу токсичных сернистых соединений. Все абсорбционные и адсорбционные способы обработки газа не позволяют в принципе решить эту задачу. Эти способы обработки газа позволяют удалять из обрабатываемого газа сероводород и сконцентрировать его на стадии регенерации сорбента, причем в составе газа регенерации абсорбента концентрация диоксида углерода достигает 90–98 % и только 2–10 % составляет сероводород [1].

Важным условием для установок промысловой очистки газа от сероводорода является низкая металло- и энергоемкость, а также минимальное количество технологических операций.

Для подготовки газа газоконденсатных месторождений необходимо обеспечить осушку газа с целью предотвращения гидратообразования и извлечения тяжелых углеводородов С5+высш.

Наиболее широко в практике промысловой обработки газа применяется метод низкотемпературной сепарации (НТС), основанный на получении отрицательных температур для разделения газоконденсатной смеси за счет естественного перепада давления. Его преимущество в том, что при незначительных капиталовложениях и небольших эксплуатационных затратах степень извлечения тяжелых углеводородов из газа достигает от 80 до 100 % от потенциала, при этом обеспечивается требуемая точка росы газа по влаге и углеводородам [2].

Концентрация сероводорода в газах изменяется в широких пределах от 0,0014 % до 25–30 % об. Малосернистый газ, в основном, связан с небольшими месторождениями Казахстана в Западно-Казахстанской области, выявленными в северной бортовой зоне Прикаспийской впадины.

Проблемы промысловой подготовки малосернистых газов удобно рассматривать на примере Чинаревского газоконденсатного месторождения, которое характеризуется следующими параметрами: пластовое давление — 25,3 МПа; буферное давление — 17,0–18,0 МПа; температура газа на устье — 10–20 °С; конденсатосодержание — 390 г/м.

Присутствующие в добываемом газе сероводород и диоксид углерода требуют решения проблемы рациональной очистки газа от сернистых соединений при промысловой подготовке его к дальнему транспорту.

Присутствие в газе сероводорода и диоксида углерода при наличии влаги вызывает опасность образования газовых гидратов, снижает калорийность газа. Чем больше в газе H2S и СО2, тем легче образуются гидраты. Удаление из добываемого газа кислых компонентов позволяет уменьшить опасность образования гидратов [3].

Все технологические потоки содержат в своем составе сероводород. Высокое содержание сероводорода в факельном газе делает его источником экологической опасности [1].

На установках низкотемпературной сепарации (НТС) получение низких температур обеспечивается снижением давления газа. В результате происходит конденсация тяжелых углеводородов и насыщение образовавшейся жидкой фазы легкими компонентами газа, а также сероводородом. Технология низкотемпературной конденсации (НТК) основана на охлаждении газа до низких температур, порядка минус 60 °С. В результате получают отбензиненный газ и углеводородный конденсат.

В отбензиненном методом НТК газе содержание сероводорода составляет 40 % от его количества в сырье, а в конденсате — 60 %. Из этого следует, что и газ, и конденсат необходимо подвергать дополнительной обработке с целью удаления сероводорода. Для этого необходимо в составе УКПГ иметь установки сероочистки [4].

На малосернистых месторождениях эти установки, как правило, не строятся, а газы дегазации углеводородного конденсата сжигаются на факелах, загрязняя атмосферу окислами серы [3]

2H2S +302 2S02 + 2Н20 (1)

Весовое количество образовавшегося диоксида серы в 2 раза больше, чем количество сгоревшего сероводорода. Диоксид серы медленно окисляется кислородом воздуха до серной кислоты, которая в виде «кислых дождей» выпадает на поверхность земли.

Наиболее полно требованиям промысловой очистки газа от сероводорода на Чинаревском месторождении отвечает технология с использованием физической абсорбции, т. к. этот метод требует простейшее оборудование: абсорбер, выветриватель, работающий при низком давлении (атмосферном) и циркуляционный насос. В качестве абсорбента сероводорода рассматривается углеводородный конденсат данного месторождения, что благоприятно сказывается на экономике процесса.

Выбор данного метода определяется следующими благоприятными обстоятельствами:

− месторождение обустроено и позволяет получать углеводородный конденсат, используя его для абсорбции сероводорода;

− в составе промысловой УКПГ имеется установка стабилизации конденсата, что позволяет использовать оборудование этой установки для регенерации насыщенного сероводородом конденсата.

В предлагаемой системе работа исключает загрязнение окружающей среды сернистыми соединениями, упрощает технологию регенерации насыщенного сероводородом абсорбента и утилизацию поступающей из скважины воды и углеводородного конденсата.

Для решения поставленных задач в состав установки дополнительно входят смеситель, насос для подачи нейтрализатора сероводорода и емкость для нейтрализатора.

Для выполнения данной задачи можно применить установку для очистки малосернистого газа от сероводорода углеводородным конденсатом в составе промысловой установки низкотемпературной сепарации газа (НТС), содержащей сепаратор, противоточный насадочный абсорбер, насос и емкость для свежего абсорбента и дополнительно содержащий смеситель, насос для подачи нейтрализатора сероводорода и емкость для нейтрализатора сероводорода, смеситель соединяется с трубопроводом вывода жидкости из сепаратора, трубопроводом вывода отработанного абсорбента из абсорбера и нагнетательным патрубком насоса для подачи нейтрализатора сероводорода в смеситель, а выходной патрубок смесителя соединяется трубопроводом с узлом стабилизации конденсата на установке НТС, при этом всасывающий патрубок насоса для подачи нейтрализатора сероводорода соединяется с нижним патрубком емкости для нейтрализатора, а выходной патрубок смесителя соединяется трубопроводом с узлом обработки жидкостей на установке НТС. Такая технология позволяет выполнить одновременную очистку от сероводорода отработанного абсорбента, воды и углеводородного конденсата [5].

На рисунке 1 приводится принципиальная схема установки очистки малосернистого газа от сероводорода.

Рис. 1. Принципиальная схема установки очистки малосернистого газа от сероводорода: 1 — сепаратор, 2 — абсорбер, 3, 6 — насос, 4, 7 — емкость, 5 — смеситель

Газ из скважины с концентрацией сероводорода 1 г/м3 под давлением 10 МПа в количестве 10000 м3/ч поступает в сепаратор, где от газа отделяется вода и углеводородный конденсат в количестве 0,1 и 0,5 м3/ч соответственно. С водой и углеводородным конденсатом из сепаратора удаляется 153 г/ч сероводорода.

Результаты изучения времени контакта абсорбента с газом приведены на рисунке 2.

Рис. 2. Влияние времени контакта абсорбента с газом на концентрацию сероводорода в очищенном газе

Результаты промысловых исследований свидетельствуют о том, что предлагаемая технология сероочистки газа на основе углеводородного конденсата, может обеспечить в условиях Чинаревского месторождения необходимое качество очищенного газа при плотности орошения не менее 1,5 м3/тыс.м3, времени контакта газа с абсорбентом не более 11 секунд и времени контакта абсорбента с газом не более 3 минут.

Литература:

  1. Мурин В. И. Технология переработки природного газа и конденсата: Справочник / В. И. Мурин, Н. Н. Кисленко, Ю. В. Сурков. — М.: Недра, 2002. — Ч. 1. — 517 с.
  2. Росляков А. Д. Анализ технологий очистки углеводородного сырья от сернистых соединений / А. Д. Росляков, В. В. Бурлий // Экология и промышленность России. -2010. — № 2. — С.42–45.
  3. Шаймарданов В. Х. Разработка высокоэффективной технологии очистки нефти от газа. / В. Х. Шаймарданов, Е. П. Масленников, У. Е. Усанов // Роснефть. — 2007. — № 4. — С. 59–61.
  4. Шестерикова Е. А. Изучение абсорбции компонентов природного газа стабильным газовым конденсатом / Е. А. Шестерикова, И. А. Галанин, Р. Е. Шестерикова // Газовая промышленность. 2012, № 6, С. 25 –27.
  5. Шестерикова Е. А. Энергетические критерии при выборе метода очистки газа от сероводорода / Е. А. Шестерикова // Геология, бурение, разработка и эксплуатация газовых и газоконденсатных месторождений: специализированный сборник, приложение к журналу «Наука и техника в газовой промышленности», № 1, 2006. — М.: ООО «ИРЦ Газпром». — С. 36–39
Основные термины (генерируются автоматически): углеводородный конденсат, газ, сероводород, малосернистый газ, концентрация сероводорода, низкотемпературная сепарация, очищенный газ, промысловая очистка газа, промысловая подготовка, необходимое качество.


Ключевые слова

сероводород, диоксида углерода, углеводородный конденсат, установка низкотемпературной сепарации, промысловая очистка газа

Похожие статьи

Низкотемпературная сепарация углеводородов из природного...

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа c целью извлечения из него газового конденсата и удаления влаги. Осуществляется при температурах от 0 до -30°C. Первая промышленная установка низкотемпературной...

Методы и перспективы борьбы с сероводородом на нефтяных...

В статье приведен анализ методов очистки газа от сероводорода на промысле, предложен процесс абсорбционной очистки углеводородных газов от сернистых соединений с использованием вихревых аппаратов в качестве абсорберов, позволяющих снизить...

Влияние термобарических условий на эффективность применения...

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа

На газоконденсатных месторождениях для подготовки газа в качестве основного процесса в

Для подготовки газа Газлинской группы месторождений (после его очистки от сероводорода...

Низкотемпературная сепарация природного газа

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа c целью извлечения из него газового конденсата и удаления влаги. Осуществляется при температурах от 0 до -30°C. Первая промышленная установка низкотемпературной...

Исследование проблемы доочистки природных газов

Осуществляется подачей водорода в очищаемый газ, после чего соединения серы превращаются в сероводород. Степень конверсии достигает 99,9 %. Недостатком является высокая стоимость, а также необходимость последующей абсорбционной очистки газа от...

Исследование процесса низкотемпературной сепарации...

Требования к очищенному газу в значительной степени определяют выбор технологической схемы. Для подготовки газа Газлинской группы месторождений (после его очистки от сероводорода и двуокиси углерода на СОУ «Учкыр»...

Низкотемпературная сепарация газа — процесс промысловой...

Для транспортировки газа по магистральным газопроводом необходимо, чтобы

При осушке газа гликоль сам насыщается влагой. Для того чтобы использовать гликоль повторно

Данной концентрации не всегда хватает для применения на установках комплексной подготовки газа...

Обзор методов борьбы с сероводородом при добыче нефти

Физические способы извлечения сероводорода из продукции нефтяных скважин используют при промысловой подготовке нефти. При подготовке нефтей с небольшим содержанием сероводорода и при небольших газовых факторах процесс сепарации эффективен, так как...

Низкотемпературная сепарация природного газа для извлечения...

На газоконденсатных месторождениях РФ для подготовки газа к дальнему транспорту применяется метод низкотемпературной сепарации (НТС). Метод состоит в охлаждении потока газа за счет дросселирования избыточного давления и механического разделения...

Похожие статьи

Низкотемпературная сепарация углеводородов из природного...

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа c целью извлечения из него газового конденсата и удаления влаги. Осуществляется при температурах от 0 до -30°C. Первая промышленная установка низкотемпературной...

Методы и перспективы борьбы с сероводородом на нефтяных...

В статье приведен анализ методов очистки газа от сероводорода на промысле, предложен процесс абсорбционной очистки углеводородных газов от сернистых соединений с использованием вихревых аппаратов в качестве абсорберов, позволяющих снизить...

Влияние термобарических условий на эффективность применения...

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа

На газоконденсатных месторождениях для подготовки газа в качестве основного процесса в

Для подготовки газа Газлинской группы месторождений (после его очистки от сероводорода...

Низкотемпературная сепарация природного газа

Низкотемпературная сепарация газа — процесс промысловой обработки природного газа c целью извлечения из него газового конденсата и удаления влаги. Осуществляется при температурах от 0 до -30°C. Первая промышленная установка низкотемпературной...

Исследование проблемы доочистки природных газов

Осуществляется подачей водорода в очищаемый газ, после чего соединения серы превращаются в сероводород. Степень конверсии достигает 99,9 %. Недостатком является высокая стоимость, а также необходимость последующей абсорбционной очистки газа от...

Исследование процесса низкотемпературной сепарации...

Требования к очищенному газу в значительной степени определяют выбор технологической схемы. Для подготовки газа Газлинской группы месторождений (после его очистки от сероводорода и двуокиси углерода на СОУ «Учкыр»...

Низкотемпературная сепарация газа — процесс промысловой...

Для транспортировки газа по магистральным газопроводом необходимо, чтобы

При осушке газа гликоль сам насыщается влагой. Для того чтобы использовать гликоль повторно

Данной концентрации не всегда хватает для применения на установках комплексной подготовки газа...

Обзор методов борьбы с сероводородом при добыче нефти

Физические способы извлечения сероводорода из продукции нефтяных скважин используют при промысловой подготовке нефти. При подготовке нефтей с небольшим содержанием сероводорода и при небольших газовых факторах процесс сепарации эффективен, так как...

Низкотемпературная сепарация природного газа для извлечения...

На газоконденсатных месторождениях РФ для подготовки газа к дальнему транспорту применяется метод низкотемпературной сепарации (НТС). Метод состоит в охлаждении потока газа за счет дросселирования избыточного давления и механического разделения...

Задать вопрос