Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Решение смешанной задачи для волнового уравнения приближенными методами

Математика
11.07.2018
4810
Поделиться
Аннотация
В этой работе приближенно решена смешанная задача для волнового уравнения методом разделения переменных, методом вариационных итераций и методом разложе-ния Адомиана. Все эти методы обеспечивает последовательность функций, которая сходится к точному решению. Во всех случаях получены одинаковые результаты, но при этом метод разложения Адомиана являлся очень простим и удобным.
Библиографическое описание
Решение смешанной задачи для волнового уравнения приближенными методами / М. А. Шарипова, А. Х. Мустафоева, Б. Б. Ортиков [и др.]. — Текст : непосредственный // Молодой ученый. — 2018. — № 27 (213). — С. 4-8. — URL: https://moluch.ru/archive/213/51984.


В этой работе приближенно решена смешанная задача для волнового уравнения методом разделения переменных, методом вариационных итераций и методом разложения Адомиана. Все эти методы обеспечивает последовательность функций, которая сходится к точному решению. Во всех случаях получены одинаковые результаты, но при этом метод разложения Адомиана являлся очень простим и удобным.

Ключевые слова: смешанная задача, волновое уравнение, метод разделения переменных, метод вариационных итераций, метод разложения Адомиана, начальное приближение, последовательность функций, точное решение.

Основной задачей строительной механики является разработка методов расчёта и получения данных для надёжного и экономичного проектирования зданий и сооружений. Надёжные методы расчётов таких зданий и сооружений позволяют возводить достаточно лёгкие и надёжные конструкции. Определённые математические модели и расчёты некоторых объектов строительной механики приводятся к решению линейных или нелинейных уравнений математической физики. В данной работе предложены применения современных более простых и точных методов решения таких уравнений [1–9].

Требуется точно решать следующую смешанную задачу для волнового уравнения методом разделения переменных (МРП), методом вариационных итераций (МВИ) и методом разложения Адомиана (МРА) [2, 7]:

, , (1)

, (2) . (3)

Для решения задачи примем обозначение . Из задачи (1)-(3) получим следующую задачу:

, (4)

, (5) . (6)

1) По идею МРП имеем:. Подставляя это выражение к уравнению (4) имеем две уравнения вида [7]

.

Отсюда получим спектральную задачу: , .

При имеем, и ,; а вторая .

Общее решение уравнение (4) и (5): ,

a из условия (6) имеем , k=2,3,4,…;

.

Точное решение задачи (4)-(6): .

2) Теперь уравнение (4) будем решать сначала по начальным условиям (6), а затем с граничными условиями (5) методом разложения Адомиана (МРА).

Для МРА имеем формулу приближенного решения задачи (4) и (6) [2]:

.

По идею МРА:

; ; ;

;…; и т. д.

Точное решение задачи (4) и (6): .

Для МРА имеем формулу приближенного решения задачи (4) и (5):

.

Здесь , (7)

По идею МРА:

;

; ;

;…; и т. д.

Общее решение уравнение (4), (5) и (7):

a из условия (6) имеем

и т.д. .

Точное решение задачи (4)-(6): .

3) Уравнение (4) будем решать сначала по начальным условиям (6), а затем с граничными условиями (5) методом вариационных итераций (МВИ).

Для решения задачи (4)-(6) МВИ примем обозначение

(8)

Из уравнения (4) получим следующую интегро-дифференциальное уравнение:

, (9)

По идею МВИ имеем формулу приближенного решения задачи (9):

Здесь — множитель Лагранжа, а для стационарного случая , и отсюда имеем . Тогда имеем приближенную формулу

Применяя МВИ, получим следующие результаты:

; ; и т. д.

Точное решение задачи (9):

a из обозначения (8) имеем

Для решения задачи (4) и (5) МВИ примем обозначение (10).

Из уравнения (4) получим следующую интегро-дифференциальное уравнение:

, (11)

По идею МВИ имеем формулу приближенного решения задачи (11):

Здесь также . Тогда имеем приближенную формулу

Применяя МВИ, получим следующие результаты:

; ; и т. д.

Точное решение задачи (11):

a из обозначения (10) имеем

a из условия (6) имеем

и т.д. .

Точное решение задачи (4)-(6): .

Точное решение задачи (1)-(3): .

Эти результаты проверены с помощью математического пакета Maple 17 [6].

Таким образом, МРП, МВИ и МРА дают одинаковые результаты, но МРА является более простим, точным и быстро приближающим к точному решению задачи. Поэтому в дальнейшем рекомендуется использование МРА при решении линейных и нелинейных задач математической физики [1–2, 8].

Литература:

  1. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method. Boston, MA: Kluwer, 1994.
  2. Wazwaz A. M. Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Berlin Heidelberg, 2009. — 761 p.
  3. Абдурашидов А. А. Решения нелинейных волновых уравнений методом вариационных итераций // Международный научный журнал: Молодой ученый. — 2017. — № 6. — С. 4–8.
  4. Абдурашидов А. А. Точное решение некоторых нелинейных уравнений Гарднера упрощенным методом укороченных разложений // Международный сетевой научно-практический журнал: Наука среди нас. Выпуск № 2(6), 2018. — С. 35–46.
  5. Абдурашидов А. А., Касимова Ф. У., Рахимова Х. А. Приближенное решение волновых уравнений более высокого порядка методом вариационных итераций // Международный научный журнал: Развитие и актуальные вопросы современной науки, № 4 (4), 2017. — С. 4–9.
  6. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислительной математики в пакетах Mathcad, Matlab, Maple (Самоучитель). — М.: НТ Пресс, 2006. — 496 с.
  7. Бицадзе А. В., Калиниченко Д. Ф. Сборник задач по уравнениям математической физики. Учеб. пособие для механико-математ. и физ. спец. вузов. — 2-е изд., доп. — М.: Наука, 1985. — 310 с.
  8. Кудряшов Н. А. Методы нелинейной математической физики: Учебное пособие. 2-е изд. — Долгопрудный: Интеллект, 2010. — 368 с.
  9. Полянин А. Д., Зайцев В. Ф., Журов А. И. Методы решения нелинейных уравнений математической физики и механики. — М.: ФИЗМАТЛИТ, 2005. — 256 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Похожие статьи
Возможности применения метода вариационных итераций и метода разложения Адомиана для нахождения приближенного решения некоторых эволюционных уравнений
Метод разложения Адомиана и метод вариационных итераций решения начальной задачи для n-мерного волнового уравнения
Решения нелинейных волновых уравнений методом вариационных итераций
Приближенное решение линейных и нелинейных интегральных уравнений Вольтерра методом вариационных итераций
Описание конечно-разностного метода решения краевых задач, описывающих волновые явления
Априорная оценка для решения первой краевой задачи для уравнения смешанного типа
Исследование математической модели первой краевой задачи для волнового уравнения методом регуляризации
Применение метода вариационных итераций к приближенному решению нелинейных обыкновенных дифференциальных уравнений
К вопросу численной реализации краевых задач для системы обыкновенных дифференциальных уравнений четвертого порядка
Решение методом продолжения задач математической физики в полуограниченных областях

Молодой учёный