Отправьте статью сегодня! Журнал выйдет 26 июля, печатный экземпляр отправим 30 июля
Опубликовать статью

Молодой учёный

Моделирование асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц

Физика
10.04.2018
68
Поделиться
Библиографическое описание
Моделирование асинхронного двигателя с переменными is – ψr в Matlab-Script в системе относительных единиц / А. А. Емельянов, В. М. Гусев, Д. И. Пестеров [и др.]. — Текст : непосредственный // Молодой ученый. — 2018. — № 14 (200). — С. 1-8. — URL: https://moluch.ru/archive/200/49278/.


Для сравнения с результатами математического моделирования линейного асинхронного двигателя в Matlab-Script дадим модель асинхронного двигателя в Script.

В работе [1] была получена структурная схема для определения статорного тока isx в Simulink-Script (рис. 1) по следующему уравнению:

(1)

где - электрическая скорость вращения ротора;

- механическая угловая скорость на валу двигателя.

Рис. 1. Структурная схема для определения тока isx в Simulink-Script

Преобразуем уравнение (1) для программирования в Matlab-Script:

Обозначим , тогда:

Переходим к оригиналу :

Переходим к конечным разностям (метод Эйлера):

Отсюда ток isx в Matlab-Script определится следующим образом:

Уравнение для определения тока isy в Simulink-Script, полученное в работе [1], имеет следующий вид:

(2)

Структурная схема реализации уравнения (2) приведена на рис. 2.

Рис. 2. Структурная схема для определения тока isy в Simulink-Script

Аналогично преобразуем выражение тока isy в форму, удобную для программирования в Matlab-Script:

Переходим к оригиналу:

Переходим к конечным разностям:

Ток isy в Matlab-Script определится следующим образом:

В работе [1] была получена структурная схема для определения потокосцепления ψrx в Simulink-Script (рис. 3) по следующему уравнению:

(3)

Рис. 3. Структурная схема для определения потокосцепления ψrx в Simulink-Script

Преобразуем уравнение (3) для программирования в Matlab-Script:

Обозначим , тогда:

Переходим к оригиналу:

Переходим к конечным разностям:

Отсюда потокосцепление ψrx в Matlab-Script определится следующим образом:

Уравнение для определения тока ψry в Simulink-Script, полученное в работе [1], имеет следующий вид:

(4)

Структурная схема реализации уравнения (4) приведена на рис. 4.

Рис. 4. Структурная схема для определения потокосцепления ψry в Simulink-Script

Преобразуем выражение потокосцепления ψry в форму, удобную для программирования в Matlab-Script:

На рис. 5 представлена структурная схема для реализации уравнения электромагнитного момента в Simulink-Script:

Рис. 5. Математическая модель определения электромагнитного момента m в Simulink-Script

Уравнение электромагнитного момента для реализации в Matlab-Script:

Механическая угловая скорость вращения вала двигателя в Simulink-Script (рис. 6):

Рис. 6. Математическая модель определения механической угловой скорости вращения вала двигателя в Simulink-Script

Отсюда механическая угловая скорость вращения вала двигателя в Matlab-Script:

Электрическая скорость вращения ротора в Simulink-Script (рис. 7):

Рис. 7. Математическая модель определения электрической скорости вращения ротора в Simulink-Script

Электрическая скорость вращения ротора в Matlab-Script:

Реализация математической модели асинхронного двигателя с короткозамкнутым ротором с переменными is ψr в Matlab-Script в системе относительных единиц приведена в листинге 1.

Листинг 1

% Номинальные данные

PN=320000; UsN=380; IsN=324; fN=50; Omega0N=104.7;

OmegaN=102.83; nN=0.944; cos_phiN=0.92; zp=3;

% Параметры Т-образной схемы замещения при номинальной частоте

Rs=0.0178; Xs=0.118; Rr=0.0194; Xr=0.123; Xm=4.552; J=28;

% Базисные величины системы относительных единиц

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

% Расчет коэффициентов

rs=Rs/Zb;

lbs=Xs/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Tj=J*Omegarb/Mb;

betaN=(Omega0N-OmegaN)/Omega0N;

SsN=3*UsN*IsN;

ZetaN=SsN/Pb;

kr=lm/(lm+lbr);

lbe=lbs+lbr+lbs*lbr*lm^(-1);

roN=0.9962;

rrk=roN*betaN;

Tr=lm/(rrk*kr);

Tr1=Tr/Omegab;

re=rs+rrk*kr^2;

Te=kr*lbe/re;

Te1=Te/Omegab;

% Расчет модели асинхронного двигателя

K=input('Длительность цикла k=');

for k=1:(K+1)

Um=1; wk=1; dt=0.000001;

Usa=Um*cos(wk*(k-1)*dt);

Usb=Um*cos(wk*(k-1)*dt-2*pi/3);

Usc=Um*cos(wk*(k-1)*dt-4*pi/3);

% 1 ступень прямого преобразования координат a,b,c -> alfa,beta

us_alfa=(1/3)*(2*Usa-Usb-Usc);

us_beta=(1/sqrt(3))*(Usb-Usc);

% 2 ступень прямого преобразования координат alfa,beta -> x,y

teta(1)=0;

teta(k+1)=teta(k)+wk*dt;

rox=cos(teta(k+1));

roy=sin(teta(k+1));

usx(k)=rox*us_alfa+roy*us_beta;

usy(k)=-roy*us_alfa+rox*us_beta;

% Расчет асинхронного двигателя

isx(1)=0; isy(1)=0; psirx(1)=0; psiry(1)=0;

wm(1)=0; w(1)=0; mc=0;

isx(k+1)=isx(k)+(-isx(k)+(1/re)*usx(k)+rrk*(kr^2)/ (re*lm)*psirx(k)+(kr/re)*w(k)*psiry(k)+(kr*lbe/re)*wk*isy(k))*dt/Te1;

isy(k+1)=isy(k)+(-isy(k)+(1/re)*usy(k)+rrk*(kr^2)/(re*lm)*psiry(k)-(kr/re)*w(k)*psirx(k)-(kr*lbe/re)*wk*isx(k))*dt/Te1;

psirx(k+1)=psirx(k)+(-psirx(k)+lm*isx(k)+(lm/(rrk*kr))*(wk-w(k))*psiry(k))*dt/Tr1;

psiry(k+1)=psiry(k)+(-psiry(k)+lm*isy(k)-(lm/(rrk*kr))*(wk-w(k))*psirx(k))*dt/Tr1;

m(k)=ZetaN*kr*(psirx(k+1)*isy(k+1)-psiry(k+1)*isx(k+1));

wm(k+1)=wm(k)+(m(k)-mc)*dt/Tj;

w(k+1)=wm(k+1)*zp;

% mass

mass_t(k)=k*dt;

mass_m(k)=m(k);

mass_w(k)=w(k+1);

end;

% Построение графиков

figure(1);

plot(mass_t,mass_w,'b');

grid on;

figure(2);

plot(mass_t,mass_m,'b');

grid on;

Результаты моделирования асинхронного двигателя в Matlab-Script даны на рис. 8.

Рис. 8. Графики скорости и электромагнитного момента

Литература:

  1. Емельянов А.А., Бесклеткин В.В., Иванин А.Ю., Соснин А.С., Воротилкин Е.А., Забузов Е.И., Волков Е.Н., Вандышев Д.М., Власова А.А., Попов С.Ю. Моделирование асинхронного двигателя с переменными is – ψr на выходе апериодических звеньев в Simulink-Script с базовым вариантом // Молодой ученый. - 2017. - №12. - С. 1-10.
  2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. - Екатеринбург: УРО РАН, 2000. - 654 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №14 (200) апрель 2018 г.
Скачать часть журнала с этой статьей(стр. 1-8):
Часть 1 (стр. 1-91)
Расположение в файле:
стр. 1стр. 1-8стр. 91

Молодой учёный