Отправьте статью сегодня! Журнал выйдет 12 июля, печатный экземпляр отправим 16 июля
Опубликовать статью

Молодой учёный

Автоматизация решения краевых задач вязкоупругих пластин произвольной конфигурации при различных моделях вязкости в среде системе Maple

Математика
18.12.2017
96
Поделиться
Библиографическое описание
Садиков, Х. С. Автоматизация решения краевых задач вязкоупругих пластин произвольной конфигурации при различных моделях вязкости в среде системе Maple / Х. С. Садиков, З. Т. Исмоилова, У. И. Кушмуротов, Г. М. Норов. — Текст : непосредственный // Молодой ученый. — 2017. — № 50 (184). — С. 102-106. — URL: https://moluch.ru/archive/184/47197/.


Работа посвящена автоматизации и моделированию решения квазистатических и динамических задач вязкоупругих пластин произвольной конфигурации при различных моделях вязкости в среде системе Maple.

Отметим что, значение вычислительного эксперимента трудно переоценить, особенно, если натурный эксперимент опасен, дорог или просто невозможен. Только разумное сочетание аналитических и численных методов является необходимым условием успеха при решении практических задач.

Как известно, математическая модель данной задачи имеет вид:

Отметим что, если при формулировке основных физических соотношений используем гипотезу о постоянстве коэффициента Пуассона, тогда изгибающие и крутящие моменты вычисляется следующими формулами:

где D- жесткость вязкоупругих пластин; интегральный оператор с ядрами релаксации R(t), т. е. )d — прогиб пластины;

µ — коэффициент Пуассона; q(x,y,t)-интенсивность внешней нагрузки.

Если же используем гипотеза об упругости объемных деформации, тогда для изгибающих и крутящего моментов вычисляется следующими формулами

где G=E/2(1+µ) — модуль сдвига; E — модуль упругости; — интегральный оператор с ядрами сдвиговой релаксации — интегральный оператор, т. е.

K=E/3(1- 2µ) — объемный модуль упругости; h — толщина пластины.

Как известно, уравнение колеблющейся тонкой вязкоупругой плиты имеет вид

где ρh — масса плиты, отнесенная к единице поверхности.

Уравнения (4) решаются при соответствующих граничных и начальных условиях

где — дифференциальные операторы, зависящие от граничных условий; Г — граница области; и — начальные значения.

Решения уравнений (1) и (4) ищем в виде

W(x,y,t)= (6)

где - системы координатных функций (полиномы Чебышева, степенные, тригонометрические, сплайны Шенберга и т. д.) СКФ.

Отметим что, СКФ точно удовлетворяют всех граничных условий, которые строятся с помощью метода R — функций В. Л. Рвачева [1];

— неизвестные функции времени t.

Сначала рассмотрим задачи квазистатического изгиба свободно опертых вязкоупругих пластин, изображенных на рисунке 1. Пусть пластина находится под действием нагрузки (q=1). В качестве ядра сдвиговой релаксации используется ядро R(t)=ε.

Рис. 1.

С целью численного решения поставленной задачи воспользуемся структурой

W(x,y)= ωΦ1- ω2 /2∙ [Φ1(D2ω+μТ2ω)+2D1Φ1 ωΦ2] (7)

В приведенных структурных формулах Ф1 и Ф2 –неопределенные компоненты структуры, которые представляется в виде

Фs=, - неизвестные компоненты, подлежащие определению, полная линейно-независимая система функций; D2, T2-дифференциальные операторы R-функций, ω — нормализованная уравнения границы области.

Присутствие двух и более числа неопределенных функций в структуре создает трудности при решении краевых задач. Примем одну из неопределенных функций равной нулю. Например, в (7) положим Ф1 ≠ 0 и Ф2=0, но нельзя Ф2 ≠ 0 и Ф1=0, так как это обстоятельство приводит к появлению «лишнего» граничного условия [1].

Нормализованное уравнение геометрии области для пластины, представленной на рис.1, имеет вид:

Ω=((Ω 1 (-Ω 2)) (8)

где Ω 1 =(a2-x2)/2a (b2-y2)/2b, Ω 2 =(c2-x2)/2c (y-d)

оператор логический конъюнкции нулевого порядка.

Отметим что, при решение краевых задач используется ортонормированное СКФ по бигармоническому и единичному оператору соответственно и далее для решения автономным систем интегральных и интегро-дифференциальных уравнений применяется численный метод, основанный на использовании квадратурных формул [2].

На рис.2, а показано изменение прогиба W(x,y,t) во времени (пунктирная линия) по оси ОХ и y=0.2, а на рис.2,б — изменение изгибающего и крутящего моментов (пунктирная линия) в той же точке. Cсплошными линиями показано изменение тех же величин для пластины с постоянными во времени коэффициентом Пуассона и ядром релаксации, совпадающим с ядром Rc(t) для рассматриваемой пластины.

Отметим что, когда используется гипотеза о постоянстве коэффициента Пуассона, тогда прогиб не изменяется во времени t.

Рис. 2.

Результаты получены при следующих значениях безразмерных параметров:

Λ=a/b=1; c/a=0.5; d/a=0.2; ε=0.05; β=0.075; µ=0.17

Здесь мы сравнивали полученные результаты на основе двух гипотезы. Численное результаты показывает что, результаты полученные на основе гипотеза об упругости объемных деформации хорошо согласуется с результатами эксперимента,

Далее рассмотрим вынужденные колебания жестко защемленных вязкоупругих пластин (рис.1). Пусть пластина находится под действием нагрузки (q=1) и при следующих начальных условиях W|t=0=0, Wt|t=0=0.

Рис. 3.

Результаты получены при следующих значениях безразмерных параметров:

Λ=a/b=1; c/a=0.5; d/a=0.2; ε=0.05; β=0.075; µ=0.17

На рис.3 показано изменение прогиба пластины W(0.0;0.2;t) полученные на основе двух гипотезы. Для сравнения сплошными линиями показано изменение прогиба пластины W(0.0;0.2;t), полученное на основе гипотезы о постоянстве коэффициента Пуассона.

В табл.1 для c/a=0.5; d/a=0.5 приведены значения частотного параметра λi первых трех тонов колебаний упругих пластин, полученные с помощью степенного полинома. Соответствующие значения частотного параметра wi определяется по формуле wii/a2√D/ρh. Здесь для определения собственных чисел λi применяется QL — метод.

Количество СКФ варьировалось от 15 до 36, при этом наблюдалась хорошая сходимость чисел λi.

Таблица 1

λi

N=15

N=21

N=28

N=36

λ1

10.115

8.562

8.265

7.922

λ2

19.272

18.013

16.284

16.127

λ3

27.822

26.717

22.312.

21.531

Метод R-функции позволяет построить координатные последовательности для областей практически произвольной конфигурации и краевых условий сложного вида. Построен эффективный вычислительный алгоритм для расчета задач наследственной теории вязкоупругости со сложной формой границы на основе комбинации методов R-функции и вариационных методов [3]. На основе предложенного вычислительного алгоритма разработано интеллектуальной алгоритмической системы.

С помощью разрабонной интеллектуальной алгоритмической системы можно решать целый класс задач механики деформируемого твердого тела и легко его обобщить для других задач математической физики.

Литература:

  1. Рвачев В. Л., Курпа Л. В. R-функций в задачах теории пластин. Киев: Наукова думка.1987.176 с.
  2. Бадалов Ф. Б. Методы решения интегральных и интегро-дифференциальных уравнений наследственной теории вязкоупругости. Ташкент. Мехнат.1987.289 с.
  3. Назиров Ш. А., Садиков Х. С. Комплекс программных средств для решения краевых задач вариационными методами./Алгоритмы. Ташкент: РИСО АН Уз.Вып.65.1988.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №50 (184) декабрь 2017 г.
Скачать часть журнала с этой статьей(стр. 102-106):
Часть 2 (стр.99-197)
Расположение в файле:
стр. 99стр. 102-106стр. 197

Молодой учёный