Солнечная облученность зданий | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Авторы: , ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №8 (142) февраль 2017 г.

Дата публикации: 28.02.2017

Статья просмотрена: 566 раз

Библиографическое описание:

Дусяров, А. С. Солнечная облученность зданий / А. С. Дусяров, Ш. К. Яхшибоев, О. Н. Бегимов. — Текст : непосредственный // Молодой ученый. — 2017. — № 8 (142). — С. 50-52. — URL: https://moluch.ru/archive/142/40015/ (дата обращения: 25.04.2024).



При лучистом теплообмене системы «солнечная радиация — атмосфера — здание» происходит облучение солнцем здания в инфракрасной, видимой и ультрафиолетовой областях электромагнитного спектра.

Эффективность солнечной облученности здания солнечной радиацией зависит от формы здания, ориентации здания, объемно-конструктивного решения стен покрытия, коэффициентов поглощения материалов и конструкций [2].

Рассмотрим характер взаимодействия с солнечной радиацией наружных ограждений здания как геометрического тела.

Сумма солнечной радиации, которая играет роль реального фактора в тепловом балансе зданий в отопительный сезон, учитывает облачность, осредненные данные многолетних наблюдений [3].

Энергетический уровень в поле солнечной радиации у поверхности наружных ограждений зданий можно считать энергетической характеристикой — или солнечной облученностью зданий.

Рассмотрим в общем случае здание произвольной формы, построенное с южной ориентацией, при которой приход лучистой энергии солнца попадет на элементарную площадку наружного ограждения [1]

(1)

Где -интенсивность солнечной радиации, поступающей на площадку южной ориентации здания; - перпендикулярная подающая радиация, поступающая на площадки южной ориентации здания; - угол наклон солнечного луча к поверхности площадки здания, имеющего южную ориентацию; -угол наклона площадки к горизонту; - азимут проекции нормали к , отсчитываемый от плоскости меридиана по часовой стрелке; - широта местности; склонение солнца или координата времени года; - часовой угол или координата времени дня.

Влияние формы и ориентация здания на его энергообеспеченность в поле солнечной радиации можно рассчитать, принимая и а также обозначениями часовой угол или координату времени дня заменяем на (часовой угол вращения Земли вокруг своей оси, равный час -время) и напишем (1) выражение следующем виде:

(2)

С учетом (2) интегрируем выражение (1) по

(3)

Поставляя в левой части подынтегральное выражение конечной суммой, для зданий и сооружений — многогранников, получим

(4)

Значит, солнечная облученность суммы наружных ограждений здания или сооружения прямой солнечной радиацией в данном случае можно определить двумя путями: суммированием произведений облученности отдельных ограждений на их площади или умножением интенсивности солнечной радиации, поступающей на площадку, перпендикулярную направлению солнечных лучей, на проекцию сооружения в плоскости, нормальной к солнечным лучам. В первом способе можно провести проекцию сооружения плоскости, нормальной к солнечным лучам, простейших отдельно стоящих зданий прямоугольной формы. С вторым способом можно существенно сокращать трудоемкость вычислений для сложных, например, криволинейных сооружений [1].

Учитывая выше изложенное, определения солнечной облученности здания можно представить как отношение общей облученности здания к сумме площадей наружных ограждений:

(5)

Отношение (5) определяем с обозначением

(а) и (б)(6)

Теперь отношение (5) можно записать

(7)

Из выражений (6) и (7) видно, что коэффициенты и характеризуют геометрию сооружения в поле солнечной радиации. Так, представляет собой коэффициент геометрического подобия ограждения. Его скалярная величина отражает удельный вклад данного ограждения в общую сумму наружных ограждений, а вектор дает полную геометрическую характеристику подобия.

Придавая значение вектора нормали к соответствующему ограждению, на основе формулы (6 а), можно написать уравнение геометрического подобия наружных ограждений следующем виде,

(8)

Из уравнения (8) видно, что два или несколько взаимно незатеняемых зданий в направленном поле излучений подобны друг другу, если векторы коэффициентов геометрического подобия их ограждений попарно равны [3].

Из выражений (6) и (7) ясно что приведенная облученность наружных ограждений геометрически подобных и одинаково ориентированных в пространстве сооружений не зависит от масштаба сооружений.

В (6 б) вторая безразмерная величина является коэффициентом энергетической эффективности формы сооружения.

Значит, два или более различных взаимно незатеняемых и не отражающих друг на друга объекта имеют в направленном поле солнечной радиации приведенную солнечную облученность, независимо от их конфигурации пропорциональную коэффициенту энергетической эффективности формы [3].

Приведенная солнечная облученность зданий позволяет количественно определить общий потенциальный теплотехнический эффект, создаваемый солнечной радиацией в окрестностях конкретного строительного объекта, а также является удобным инструментом анализа при исследовании влияния формы, ориентации здания, времени суток и года на абсолютную величину «суммарного солнечного эффекта» в тепловом режиме зданий, т. е. является критерием энергетической оптимальности объемно-планировочных решений зданий в направленном или диффузно-направленном поле излучений [2].

Литература:

  1. Кондратьев К. Я. «Актинометрия». — Л.: Стройиздат, 1965.
  2. Энергоактивные здания. Под редакцией Э. В. Сарнацкого и Н. П. Селиванова. Москва Стойиздат 1988 ст. 370
  3. Селиванов Н. П. «Энергоактивные солнечные здания».- М.: Знание. (сер. Стр-во и архитектура), 1982, № 2.
Основные термины (генерируются автоматически): солнечная радиация, ориентация здания, влияние формы, координата времени дня, наружное ограждение здания, приведенная солнечная облученность, солнечная облученность здания, часовой угол, южная ориентация, южная ориентация здания.


Похожие статьи

Свойства энергетического поля солнечной радиации...

– периодичность и изменчивость направления и энергетического уровня потоков радиации во времени и пространстве для большинства вращающихся объектов и систем, например системы «Земля-здание»

Защита жилых зданий от перегрева | Статья в журнале...

– снижение коэффициента теплопоглощения солнечной радиации материалом наружной поверхности ограждения; – специальные конструктивные приемы, а также экранирование наружных ограждений от солнечных лучей

Обзор солнечных панелей для систем автономного питания

Наиболее доступной является солнечная энергия. Каждый день Земля получает огромные мощности от солнечного света, преобразование

Внешне такие батареи можно распознать по своеобразному узору ярко синего цвета, различной форме и ориентации кристаллов кремния.

Методика расчета определения количества теплоты в пассивной...

Солнечные лучи проникают в помещение через окно, солнечная радиация поглощается внутренними поверхностями помещения и накапливается элементами здания.

Исследование влияния погодных условий на параметры работы...

Известно, что количество солнечной энергии поступающей на поверхность Земли зависит от состояния атмосферы, продолжительности солнечного дня, время суток и сезонности года. Причем основным атмосферным явлением, определяющее количество солнечной радиации...

Эффективность съёма энергии солнца в системе солнечный...

Так же на уровень солнечной активности заметно оказывает влияние время года (сезонные перепады). Такие перепады солнечной активности могут варьировать от 1.7 до 11.4 кВтч*м2, в самые жаркие дни на широте 55–58 градусов.

Принципы проектирования энергоактивных зданий

Оптимизация формы и ориентации объекта, направленная на максимальное использование благоприятных и нейтрализацию неблагоприятных воздействий внешней среды в отношении энергетического баланса здания

Мероприятия по снижению теплопотерь через ограждения и по...

Средняя интенсивность суммарной солнечной радиации на окна южной ориентации на широте 60о составляет более 400 Вт/м2, поступления тепла через окна составляет 170 Вт/м2.

Похожие статьи

Свойства энергетического поля солнечной радиации...

– периодичность и изменчивость направления и энергетического уровня потоков радиации во времени и пространстве для большинства вращающихся объектов и систем, например системы «Земля-здание»

Защита жилых зданий от перегрева | Статья в журнале...

– снижение коэффициента теплопоглощения солнечной радиации материалом наружной поверхности ограждения; – специальные конструктивные приемы, а также экранирование наружных ограждений от солнечных лучей

Обзор солнечных панелей для систем автономного питания

Наиболее доступной является солнечная энергия. Каждый день Земля получает огромные мощности от солнечного света, преобразование

Внешне такие батареи можно распознать по своеобразному узору ярко синего цвета, различной форме и ориентации кристаллов кремния.

Методика расчета определения количества теплоты в пассивной...

Солнечные лучи проникают в помещение через окно, солнечная радиация поглощается внутренними поверхностями помещения и накапливается элементами здания.

Исследование влияния погодных условий на параметры работы...

Известно, что количество солнечной энергии поступающей на поверхность Земли зависит от состояния атмосферы, продолжительности солнечного дня, время суток и сезонности года. Причем основным атмосферным явлением, определяющее количество солнечной радиации...

Эффективность съёма энергии солнца в системе солнечный...

Так же на уровень солнечной активности заметно оказывает влияние время года (сезонные перепады). Такие перепады солнечной активности могут варьировать от 1.7 до 11.4 кВтч*м2, в самые жаркие дни на широте 55–58 градусов.

Принципы проектирования энергоактивных зданий

Оптимизация формы и ориентации объекта, направленная на максимальное использование благоприятных и нейтрализацию неблагоприятных воздействий внешней среды в отношении энергетического баланса здания

Мероприятия по снижению теплопотерь через ограждения и по...

Средняя интенсивность суммарной солнечной радиации на окна южной ориентации на широте 60о составляет более 400 Вт/м2, поступления тепла через окна составляет 170 Вт/м2.

Задать вопрос