Отправьте статью сегодня! Журнал выйдет 12 июля, печатный экземпляр отправим 16 июля
Опубликовать статью

Молодой учёный

Новые обобщения определения параболы

Математика
02.07.2016
295
Поделиться
Библиографическое описание
Смирнова, Т. А. Новые обобщения определения параболы / Т. А. Смирнова, М. Е. Колотов. — Текст : непосредственный // Молодой ученый. — 2016. — № 13 (117). — С. 52-58. — URL: https://moluch.ru/archive/117/32291/.


Новые обобщения определения параболы

Целью работы является обобщение определения параболы в том случае, когда фокус превращается в фокальную окружность.

Парабола — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы) [1, c.85].

Каноническое уравнение параболы в прямоугольной системе координат:

Рис. 1. Парабола

Директриса — прямая , лежащая в плоскости конического сечения и обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса кривой к расстоянию от той же точки до этой прямой есть величина постоянная, равная эксцентриситету.

Эксцентриситет — числовая характеристика конического сечения, показывающая степень его отклонения от окружности. Для параболы эксцентриситет равен .

В данной работе исследуется случай, при котором вместо фокуса-точки рассматривается фокальная окружность радиуса , центр которой находится в начале системы координат.

Рис. 2. Фокальная окружность

Найдем , если точка расположена вне круга:

тогда уравнение геометрического места точек:

(1)

Если же точка расположена внутри круга, то:

(2)

Для описания данного геометрического места точек необходимо отдельно рассмотреть следующие случаи:

  1. Точка находится вне окружности (и на ее границе):
    1. — Рассматривается участок слева от директрисы.
    2. — Рассматривается участок справа от директрисы.
    3. .
  2. Точка находится внутри окружности:
    1. — Рассматривается участок слева от директрисы.
    2. — Рассматривается участок справа от директрисы.
    3. .

Рассмотрим все случаи для уравнения (1). Перенесем в правую часть и избавимся от радикала, возведя обе части в квадрат:

раскроем модуль для случая 1.a:

Сгруппировав слагаемые и вынеся общие множители, получим следующее уравнение:

которое можно привести к виду

Однако для построения графиков удобнее будет воспользоваться следующим видом:

Очевидно, что обязательно подкоренное выражение не должно быть отрицательным. Рассмотрим данное неравенство подробнее.

Таким образом, необходимо учитывать ряд ограничений на область определения:

Рис. 3. ГМТ 1.а при

Рассматривая аналогичным образом случаи 1.b и 1.c, получим:

Для 1.b:

Рис. 4. ГМТ 1.b при

Для 1.c:

Перейдем теперь к рассмотрению случая 2. Так как расстояние от любой точки внутри окружности до ее границы не может превосходить радиус этой окружности то логично потребовать этого же и от расстояния до прямой: . Что, в свою очередь, даст условие . В (2) подставим условия случая 2.а:

перенесем в правую часть и избавимся от радикала, возведя обе части в квадрат:

возведя обе части равенства в квадрат, получим:

Также на область определения накладывается условие расположения внутри окружности: , где определяется соответствующим рассматриваемому случаю уравнением ГМТ. Для случая 2.а:

Старший коэффициент параболы больше нуля, следовательно, допустимая область находится между корнями уравнения. Решим данное квадратное уравнение:

Таким образом, в случае 2.а:

Рис. 5. ГМТ 2.а при

Перейдем к случаю 2.b. Аналогично с 2.а, получим ГМТ:

Рис. 6. ГМТ 2.b при

В целом, случай 2.с аналогичен случаю 1.с:

Можно сделать вывод, что при , будет наблюдаться следующая картина:

Рис. 7. Авторская парабола при

Иначе, при :

Рис. 8. Авторская парабола при

В результате исследования найдены возможные обобщения параболы в случае, когда фокус превращается в фокальную окружность. Эти обобщения представлены на рисунках 6–8.

Литература:

  1. Д. В. Клетеник «Аналитическая геометрия»
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №13 (117) июль-1 2016 г.
Скачать часть журнала с этой статьей(стр. 52-58):
Часть 1 (стр. 1-125)
Расположение в файле:
стр. 1стр. 52-58стр. 125

Молодой учёный