Отправьте статью сегодня! Журнал выйдет 26 июля, печатный экземпляр отправим 30 июля
Опубликовать статью

Молодой учёный

Расположение собственных значений обобщенной модели Фридрихса

Математика
28.06.2016
26
Поделиться
Библиографическое описание
Эгамбердиев, А. Н. Расположение собственных значений обобщенной модели Фридрихса / А. Н. Эгамбердиев. — Текст : непосредственный // Молодой ученый. — 2016. — № 13 (117). — С. 60-62. — URL: https://moluch.ru/archive/117/32107/.


В рамках проблемы нескольких тел на непрерывном пространстве и на решетке исследовано большое число задач о существовании собственных значений для систем квазичастиц, число которых сохраняется [1]. Однако имеются в определенном смысле более актуальные и интересные задачи, возникающие в теории твердого тела [2], статистической физике [3], теории квантового поля [4] и теории химических реакций [5], в которых число квазичастиц не сохраняется.

В настоящей работе рассматривается семейство обобщенной модели Фридрихса ,,, действующей в двухчастичном обрезанном подпространстве фоковского пространства. Описано множество собственных значений лежащих ниже существенного спектра оператора .

Пустъ -трехмерный куб с соответствующим отождествлением противоположных граней, — гилъбертово пространство квадратично-интегрируемых (комплекснозначных) функций, определенных на , -одномерное комплексное пространство.

Обозначим , , .

Определение 1. Гилъбертово пространство H называется двухчастичным обрезанным подпространством Фоковского пространства.

Рассмотрим семейство ограниченных и самосопряженных операторов , , (семейство обобщенных моделей Фридрихса), действующих в гилъбертовом пространстве и задающихся формулой

,, (1)

Где и — вещественные положительные числа, -вещественно-непрерывная (отличная от нуля) функция на , а функция определяется равенством:

,

, .

Оператор возмущения , оператора , является самосопряженным оператором ранга 2. Следовательно, из известной теоремы Г.Вейля о сохранении существенного спектра при возмущениях конечного ранга вытекает, что существенный спектр оператора совпадает с существенным спектром оператора , . Известно, что

,

где числа и определяются равенствами:

, .

Из последних двух фактов следует, что

.

Видно, что существенный спектр оператора не зависит от . В частности

.

Замечание 2. Отметим, что функция записывается в виде

, .

Следовательно, для любого функция имеет единственный невырожденный минимум в точке .

Следующая теорема описывает число собственных значений оператора .

Теорема 1. Для любого оператор имеет не более чем по одному простых собственных значений лежащихлевее и правее существенного спектра.

Положим:

Для любых и имеет место . Так как функция имеет единственный невырожденный минимум в точке и непрерывная функция на , в силу теоремы Лебега о предельном переходе под знаком интеграла имеем, что существует конечный интеграл

.

Обозначим

Следующая теорема описывает расположение собственных значений оператора .

Теорема 2.

1)Для любых и оператор не имеет собственных значений, лежащих ниже существенного спектра;

2)Для любого ненулевого оператор имеет единственное собственное значение лежащее на ;

3)Для любых и оператор имеет единственное собственное значение Более того

и

В силу теоремы 2 можно сформулировать аналогичную теоремы о собственном значении оператора лежащих правее его существенного спектра.

Заметим, что теорема 2 играет важную роль при изучени структуры существенного спектра оператора

действующего в гильбертовом пространстве

Здесь под знаком интеграла стоят одинаковые слои.

Литература:

  1. Ю. А. Изюмов, М. В. Медведев. Магнитный полярон в ферромагнитном кристалле. ЖЭТФ. 1970, вып. 2, № 8, с. 553–560.
  2. А. Т. Mogilner. Hamiltonians of solid state physics at few particle discrete Schroedinerger operators: problems and results. Advances in Sov. Math. 5 (1991), 139–194.
  3. V. A. Malishev and R. A. Minlos. Linear infinite-particle operators. Translations of Math. Monagraphs. Amer. Math. Soc. Trasl. 177 (1996), № 2, 159–193.
  4. K. O. Friedrichs. On the perturbation of continuous spectra. Comm. Appl. Math. 1 (1948), 361–406.
  5. V. Bach, J. Froehlich, I. M. Sigal. Mathematical theory of non-relavistic matter and radiation. Lett. Math. Phys. 34 (1995), 183–201.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Молодой учёный №13 (117) июль-1 2016 г.
Скачать часть журнала с этой статьей(стр. 60-62):
Часть 1 (стр. 1-125)
Расположение в файле:
стр. 1стр. 60-62стр. 125

Молодой учёный