Методы обследования промышленных зданий и сооружений. Современные измерители прочности материалов неразрушающим методом | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 11 мая, печатный экземпляр отправим 15 мая.

Опубликовать статью в журнале

Авторы: ,

Рубрика: Технические науки

Опубликовано в Молодой учёный №9 (89) май-1 2015 г.

Дата публикации: 02.05.2015

Статья просмотрена: 3348 раз

Библиографическое описание:

Толушов, С. А. Методы обследования промышленных зданий и сооружений. Современные измерители прочности материалов неразрушающим методом / С. А. Толушов, В. В. Павленко. — Текст : непосредственный // Молодой ученый. — 2015. — № 9 (89). — С. 309-313. — URL: https://moluch.ru/archive/89/18241/ (дата обращения: 28.04.2024).

Обследование зданий и сооружений — сложная и ответственная деятельность, требующая соблюдения норм и наличия разрешительной документации. Допуск к работам, осуществляющих надзор за техническим состоянием строительных конструкций имеют организации, работающие официально и имеющие соответствующие лицензии. Это комплекс мероприятий по оценке технического состояния строительных конструкций зданий и сооружений промышленного назначения, с целью выработки на основе этой оценки решений о необходимости проведения ремонта, реконструкции или сноса.

Комплекс работ по обследованию состоит из нескольких этапов:

-          комплекование и анализ существующей проектной документации, анализ предыдущих плановых обследований;

-          обследование конструкций и отдельных узлов здания с помощью приборов, таких как прочностномер, трещиномер лазерная рулетка и методов мониторинга технического состояния здания;

-          выявление и фотофиксация существующих дефектов и повреждений строительных конструкций;

-          обработка данных обследования, составление дефектных ведомостей;

-          составление технического заключения, включающего перечень выявленных дефектов, подтверждающие фотоматериалы, расчеты, разъяснение причин появления дефектов и последствий, к которым они могут привести, рекомендации по устранению существующих дефектов и повреждений;

Существует несколько методов обследования зданий и сооружений:

-          визуальный — используется на начальном этапе обследования здания с целью визуального определения дефектов;

-          ультразвуковой — один из частных случаев акустического метода. Он используется для определения скрытых дефектов материалов и определения прочности бетона, а также для определения глубины, ширины раскрытия трещин в бетоне или каменной кладке, анализа качества сварных швов и толщины металлоконструкций;

-          электромагнитный — используется для исследования структуры, толщины и скрытых дефектов фундаментов, подрельсового основания подкрановых путей;

-          радиометрический — применяется для определения плотности бетона, камня и сыпучих материалов

-          нейтронный — применяется для определения плотности бетона и камня;

-          электрооптический — применяется для определения параметров вибрации конструкций;

-          метод отрыва со скалыванием и метод сдавливания — применяются для определения прочности бетона;

-          метод пластической деформации — применяется для определения прочности и деформативности материала;

-          нейтронный — применяется для определения влажности бетона и камня;

-          пневматический — применяется для определения воздухопроницаемости;

-          акустический — в узком понимании этого термина применяется для определения звукопроводности стен и перекрытий;

-          тепловизионный — применяется для определения уровня теплозащиты здания, для диагностики систем водоснабжения и отопления, для определения зон аномального перегрева электроприборов;

-          нивелирование, теодолитная съемка и фотограмметрия — применяется для определения объемной деформации здания, а также для определения осадки фундамента;

Следует отметить, что в ряде случаев, для получения наиболее точной и достоверной информации необходимо использование методов с частичным разрушением тела конструкций. Например, наиболее полную информацию о прочности бетона можно получить, взяв керны для лабораторных исследований.

Испытания строительных конструкций применяются для подтверждения их достаточной несущей способности, и могут быть:

-          проводимые до полного разрушения конструкций (позволяет определить максимальную несущую способность данной строительной конструкции);

-          проводимые до расчетного нагружения (в целях определения достаточной несущей способности под проектные нагрузки);

По результатам обследования составляется техническое заключение, включающее в себя:

-          описание выявленных дефектов и нарушений с привязкой к объекту, описание причин возникновения повреждений;

-          поясняющие фотоматериалы;

-          графические материалы обследования (планы, разрезы, схемы конструкций);

-          ссылки на требования строительных норм;

-          расчетную часть;

-          выводы и рекомендации;

-          рекомендуемые схемы усиления конструкций;

Все методы обследования делятся на:

-          неразрушающие;

-          с частичным разрушением тела конструкции;

На этапе обследования конструкций необходимо определение точных величин прочностных характеристик строительных конструкций. Для этого необходимо использование приборов для контроля качества строительных материалов при проведении обследования зданий и сооружений. Рассмотрим некоторые из них:

1. Измеритель прочности ударно- импульсный ОНИКС-2.6 предназначен для определения прочности цементных бетонов, растворов и других композиционных материалов методом ударного импульса по ГОСТ 22690 при технологическом контроле изделий и конструкций, обследовании зданий и сооружений, на стройплощадках и гидротехнических сооружениях.

Прибор может применяться для определения прочности кирпича, твердости, однородности, плотности и пластичности различных композиционных материалов. [1]

Рис. 1. Общий вид прибора «ОНИКС — 2.6» [1]

 

Прибор выпускается в двух исполнениях:

-          ОНИКС-2.6 — прибор с двухпараметрическим измерением прочности по ударному импульсу и отскоку в диапазоне от 1 до 100 МПа.

-          ОНИКС-2.6 ЛБ — прибор с двухпараметрическим измерением прочности по ударному импульсу и отскоку в диапазоне от 1 до 30 МПа при контроле легкого бетона и различных материалов (кирпич, штукатурка, композиты и др.).

Для высокомарочных бетонов применяется прибор ОНИКС-2.6 ВБ с двухпараметрическим измерением прочности по ударному импульсу и отскоку в диапазоне от 1 до 150 МПа.

Прибор предназначен для работы при температуре окружающей среды от минус 10 °С до +40 °С и максимальной влажности 90 % при температуре +25 °С.

Прибор соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ Р 52931–08.

2. Измеритель прочности материалов ОНИКС-1.ОС предназначен для определения прочности бетона методом отрыва со скалыванием в соответствии с ГОСТ 22690–88 при технологическом контроле качества монолитного и сборного железобетона, обследовании зданий, сооружений и конструкций.

Рис. 2. Общий вид приборов исполнения ОНИКС-1.ОС.050, ОНИКС-1.ОС.100 [1]: 1-корпус; 2-рукоятка привода; 3-гидроцилиндры; 4, 5-опоры; 6-тяга; 7-штурвал; 8-электронный блок; 9- USB-разъём.

 

Прибор может использоваться для установления и коррекции градуировочных характеристик и зависимостей ударно-импульсных и ультразвуковых измерителей прочности неразрушающего контроля.

Приборы выпускается в двух исполнениях:

-          исполнение 1 — ОНИКС-1.ОС.050 — с диапазоном измерения нагрузки от 5,0 до 50,0 кН;

-          исполнение 2 — ОНИКС-1.ОС.100 — с диапазоном измерения нагрузки от 5,0 до 100,0 кН;

Рабочие условия эксплуатации — диапазон температур от минус 10 ºС до плюс 40 ºС, относительная влажность воздуха при плюс 25 ºС и 4 ниже без конденсации влаги до 90 %, атмосферное давление от 84 до 106,7 кПа.

Рис. 3. Общий вид прибора «ОНИКС-СР» [1]: 1-Г-образный силовой кронштейн; 2-корпус; 3-электронный блок; 4-графический дисплей; 5-клавиатура; 6-винт; 7-рукоять привода; 8-регулировочный паз; 9-платформа; 10-USB-разъём; 11-крепёжные болты; 12-силовой поршень; 13-скалывающий элемент; 14-шурупы по бетону; 15-прижимная пластина; 16-крышка батарейного отсека.

 

3. Прибор ОНИКС-СР является модификацией измерителя прочности ОНИКС и предназначен для измерения прочности бетона методом скалывания ребра в соответствии с ГОСТ 22690- 88 при технологическом контроле качества монолитного и сборного железобетона, обследовании зданий, сооружений и конструкций. [1]

Прибор может использоваться для установления и коррекции градуировочных характеристик и зависимостей ударно-импульсных и ультразвуковых измерителей прочности неразрушающего контроля.

Рабочие условия эксплуатации — диапазон температур от минус 10 до плюс 40°С, относительная влажность воздуха при +25°С и ниже без конденсации влаги до 90 %, атмосферное давление от 84 до 106,7 кПа. Прибор соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ 12997–84.

4. Измеритель времени и скорости распространения ультразвука “Пульсар-2”, модификация ″Пульсар-2.2″ предназначен для оценки свойств и дефектоскопии твердых материалов по времени и скорости распространения, и форме принимаемых ультразвуковых (УЗ) импульсов при поверхностном и сквозном прозвучивании.

Рис. 4. Общий вид прибора «ПУЛЬСАР-2.2» [1]: 1-электронный блок; 2-датчики сквозного прозвучивания; 3-датчики поверхностного прозвучивания; 4-клавиатура; 5-графический дисплей; 6-разъёмы для датчика поверхностного прозвучивания; 7-USB-разъём

 

Прибор позволяет выявлять дефекты, определять прочность, плотность и модуль упругости строительных материалов, а также звуковой индекс абразивов по предварительно установленным градуировочным зависимостям данных параметров от скорости распространения УЗ импульсов.

Основные области применения:

-          определение прочности бетона согласно ГОСТ 17624–87 ″Бетоны. Ультразвуковой метод определения прочности″ при технологическом контроле, обследовании зданий и сооружений, в том числе в сочетании с методом отрыва со скалыванием (прибор ОНИКС-ОС) и методом скалывания ребра (прибор ОНИКС-СР).

-          поиск дефектов в бетонных сооружениях по аномальному снижению скорости и по форме визуализируемых сигналов УЗ импульсов;

-          оценка глубины трещин;

-          оценка пористости, трещиноватости и анизотропии композитных материалов и горных пород;

-          определение модуля упругости и плотности материалов.

Прибор выпускается с базовой настройкой, ориентированной на тяжелый бетон средних марок. Для других марок и материалов требуется градуировка и корректировка в условиях пользователя согласно ГОСТ 17624, ГОСТ 24332 и методических рекомендаций МДС 62–2.01 ГУП «НИИЖБ» по контролю прочности бетона монолитных конструкций ультразвуковым методом поверхностного прозвучивания.

Прибор обеспечивает работу:

-          при поверхностном прозвучивании с датчиком поверхностного прозвучивания в сборе на фиксированной базе (120 ± 1) мм с сухим контактом;

-          при сквозном прозвучивании с датчиками сквозного прозвучивания на произвольной базе с контактной смазкой или поверхностном и угловом прозвучивании c сухим контактом (конусные насадки).

Рабочие условия эксплуатации: диапазон температур — от минус 10 °С до плюс 40 °С, относительная влажность воздуха до 80 % без конденсации влаги, атмосферное давление 84…106,7 кПа. [1]

Таким образом приборы по измерению прочности строительных материалов неразрушающим методом являются только средством по определению основных характеристик материалов, которые должны быть основой моделировании процессов происходящих при эксплуатации зданий и сооружений [.

 

Литература:

 

1.         http://www.interpribor.ru/pulsar12.php

2.         Арискин М. В., Гарькин И. Н. Теоретические исследования напряжено-деформируемого состояния в составной балке // Молодой ученый. — 2014. — № 11. — С. 37–40.

3.         Арискин М.В Совершенствование клееметаллических соединений деревянных конструкций с применением стальных шайб// диссертация на соискание учёной степени кандидата технических наук/Пензенский государственный университет архитектуры и строительства, Пенза 2011

4.         Арискин М. В., Гуляев Д. В., Агеева И. Ю., Гарькин И.Н Теоретические исследования напряженно-деформированного состояния элементов соединений на вклеенных шайбах [Текст] // Молодой ученый. — 2013. — № 2. — С. 27–31.

5.         Арискин М. В., Гуляев Д. В., Агеева И. Ю. Изготовление соединений на вклеенных стальных шайбах / Альманах современной науки и образования. 2013. № 6 (73). С. 13–15.

6.         Арискин М. В., Д. В. Гуляев, И. Ю. Агеева, Гарькин И.Н Применение многорядных соединений в деревянных конструкциях в практике строительства [Текст] // Молодой ученый. — 2013. — № 5. — С. 35–38.

7.         Арискин М. В., Гуляев Д. В., Гарькин И. Н., Родина Е. В. Экономическая эффективность проектирования в комплексе Аllplan по сравнению с существующими CAD-системами [Текст] // Молодой ученый. — 2013. — № 5. — С. 32–35.

8.         Арискин М. В., Гуляев Д. В., Гарькин И. Н., Агеева И. Ю. Современные тенденции развития проектирования в строительстве [Текст] / М. В. Арискин [и др.] // Молодой ученый. — 2012. — № 10. — С. 31–33.

Основные термины (генерируются автоматически): прибор, обследование зданий, поверхностное прозвучивание, прочность бетона, сквозное прозвучивание, сооружение, ударный импульс, атмосферное давление, двухпараметрическое измерение прочности, общий вид прибора.


Похожие статьи

Неразрушающие методы контроля прочности бетона

Метод сквозного ультразвукового прозвучивания позволяет контролировать прочность не только в

бетон, прочность бетона, неразрушающий контроль, методы испытаний, ударный, скол, ультразвуковой.

Методы обследования промышленных зданий и сооружений.

Обследование несущих конструкций зданий после воздействия...

При обследовании зданий объектами рассмотрения являются следующие основные несущие конструкции

Рис. 1. Номограмма для определения температуры нагрева тяжелого бетона класса В 15 в зависимости от его остаточной прочности и скорости распространения...

Специфика и проблемы обследования промышленных зданий...

Определение прочности бетона скалыванием, прибором типа ОНИКС-ОС, см. рис.6.

Современные измерители прочности материалов неразрушающим методом. Экспертиза промышленной безопасности зданий и сооружений: характерные проблемы.

Методы определения свойств самоуплотняющихся бетонных...

После заполнения левой части прибора бетонной смесью сдвигается заслонка

7. Иманов, M.C., Коровкин M. O. Исследование удобоукладываемости и прочности самоуплотняющегося бетона

К вопросу определения давления начала конденсации газоконденсатных смесей в...

Необходимость разработки модели экспертной системы...

Визуальное обследование предполагает осмотр здания или сооружения и отдельных строительных конструкций с применением простейших приборов (рулетки, молотки, отвесы, дрели, уровни, скарпели), которые не требуют специальных знаний для обращения с ними.

Система диагностики тоннеля | Статья в сборнике...

При обследовании помимо визуального осмотра стандартными методами проводятся инструментальные измерения, инструментальные и лабораторные исследования характеристик материалов при помощи приборов и оборудования.

Стенд проверки контрольно-измерительных приборов

Стенд проверки контрольно-измерительных приборов. Авторы: Обухов Дмитрий Вячеславович, Турабов Рамазан Чахчабегович, Горпинченко Алексей Владимирович, Дюнов Василий Александрович

В качестве эталонного указателя давления выступает лабораторный прибор.

Применение методов неразрушающего контроля при диагностике...

Подъемные технические устройства подвержены, в процессе эксплуатации, циклическим нагрузкам, которые приводят к возникновению следующих дефектов: 1) появлению трещин в сварных швах (скрытых, сквозных, поверхностных); 2) расслоению металла; 3)...

Похожие статьи

Неразрушающие методы контроля прочности бетона

Метод сквозного ультразвукового прозвучивания позволяет контролировать прочность не только в

бетон, прочность бетона, неразрушающий контроль, методы испытаний, ударный, скол, ультразвуковой.

Методы обследования промышленных зданий и сооружений.

Обследование несущих конструкций зданий после воздействия...

При обследовании зданий объектами рассмотрения являются следующие основные несущие конструкции

Рис. 1. Номограмма для определения температуры нагрева тяжелого бетона класса В 15 в зависимости от его остаточной прочности и скорости распространения...

Специфика и проблемы обследования промышленных зданий...

Определение прочности бетона скалыванием, прибором типа ОНИКС-ОС, см. рис.6.

Современные измерители прочности материалов неразрушающим методом. Экспертиза промышленной безопасности зданий и сооружений: характерные проблемы.

Методы определения свойств самоуплотняющихся бетонных...

После заполнения левой части прибора бетонной смесью сдвигается заслонка

7. Иманов, M.C., Коровкин M. O. Исследование удобоукладываемости и прочности самоуплотняющегося бетона

К вопросу определения давления начала конденсации газоконденсатных смесей в...

Необходимость разработки модели экспертной системы...

Визуальное обследование предполагает осмотр здания или сооружения и отдельных строительных конструкций с применением простейших приборов (рулетки, молотки, отвесы, дрели, уровни, скарпели), которые не требуют специальных знаний для обращения с ними.

Система диагностики тоннеля | Статья в сборнике...

При обследовании помимо визуального осмотра стандартными методами проводятся инструментальные измерения, инструментальные и лабораторные исследования характеристик материалов при помощи приборов и оборудования.

Стенд проверки контрольно-измерительных приборов

Стенд проверки контрольно-измерительных приборов. Авторы: Обухов Дмитрий Вячеславович, Турабов Рамазан Чахчабегович, Горпинченко Алексей Владимирович, Дюнов Василий Александрович

В качестве эталонного указателя давления выступает лабораторный прибор.

Применение методов неразрушающего контроля при диагностике...

Подъемные технические устройства подвержены, в процессе эксплуатации, циклическим нагрузкам, которые приводят к возникновению следующих дефектов: 1) появлению трещин в сварных швах (скрытых, сквозных, поверхностных); 2) расслоению металла; 3)...

Задать вопрос