Оптимальные системы управления: классификация и методы синтеза | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 18 мая, печатный экземпляр отправим 22 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №51 (446) декабрь 2022 г.

Дата публикации: 24.12.2022

Статья просмотрена: 694 раза

Библиографическое описание:

Лось, А. В. Оптимальные системы управления: классификация и методы синтеза / А. В. Лось. — Текст : непосредственный // Молодой ученый. — 2022. — № 51 (446). — С. 40-43. — URL: https://moluch.ru/archive/446/98183/ (дата обращения: 10.05.2024).



В статье рассматриваются методы решения задач оптимального управления с точки зрения применимости отдельных методов синтеза оптимальных САУ в зависимости от структуры и характеристик системы.

Ключевые слова: оптимальные САУ, классификационные признаки оптимальных САУ, методы синтеза и анализа.

Задача оптимального управления включает в себя цель управления, управляемый объект, измерительную систему и вычислительное устройство, осуществляющее расчет оптимального управления, которое находит связи, [2, 3].

Решение задач оптимального управления предполагает выбор критерия оптимальности, который формирует цель управления, например, достижение определенного значения скорости трактора при автоматическом управлении ходоуменьшителем, минимизация времени регулирования, оптимизация тепловых потерь и т. д. При этом, необходимо учитывать ограничения — так, при минимизации времени регулирования, должны быть в допустимых пределах другие показатели качества переходного процесса. При этом, оценка свойств системы должна быть объективной, формализованной.

В целом, среди практических задач синтеза оптимального управления выделяются следующие: определение оптимальных значений параметров и синтез структуры и параметров регулятора при заданных параметрах и структуры объекта управления.

Решение задач определения параметров возможно различными аналитическими методами при минимизации интегральных оценок, а также с помощью моделирования, в том числе в Matlab, Scilab, Winmass, программный комплекс ТАУ, система компьютерной алгебры Maxima и др. Решение задач второго типа основано на использовании специальных методов: методы классического вариационного исчисления, принципа максимума Понтрягина и др, которые также могут быть успешно реализованы в одной из программ моделирования и/или расчета. Например, для синтеза оптимальных систем при случайных сигналах используются методы Винера, также вариационные и частотные методы. В современных условиях, достаточно актуально развитие адаптивных САУ, в которых неопределенность, в том числе, связанная с не стационарностью объекта, играет ключевую роль при выборе метода синтеза и обеспечения управления. Так, при формализации критерия качества, требуется определить законы изменения настраиваемых параметров. Данная задача связана с синтезом наблюдателей, также в ряде учебных пособий отмечаются возможности применения градиентных методов для данной цели [2,3]. Таким образом, проектирование оптимальных адаптивных САУ предполагает изменение критерия качества и вычисление параметров регулятора, что требует синтеза наблюдателя и сопровождается другими особенностями, связанными с адаптивным управлением [2,5].

При этом, практически все математические постановки задачи оптимального управления сводятся к следующим [5]: достижение максимального быстродействия, управление конечным состоянием, задача управления по минимуму интеграла, которые в свою очередь возможно преобразовать, например, с помощью инвариантного вложения, в задачу оптимизации по отношению к координатам или переменным состояния объекта.

Рис 1. иллюстрирует классификацию оптимальных САУ, которая основана на анализе литературы [1,2,3,4,5] и построена на следующих признаках: оптимизируемые показатели, характер переходных процессов, протекающих в системе, тип дифференциальных уравнений, описывающих систему, характер критерия оптимальности.

Классификация оптимальных САУ

Рис. 1. Классификация оптимальных САУ

Равномерно оптимальные — это наилучшие системы в каждом отдельном случае, то есть при каждом проведённом эксперименте, статистически оптимальные системы — наилучшие при усреднении многих экспериментов, минимаксно-оптимальные системы, дающие наилучший результат в наихудших условиях. С точки зрения синтеза, также важно детерминированная система или стохастическая, дискретная или непрерывная.

Так, критерий оптимальности может представлять собой технический или технико-экономический критерий, математическое выражение которого является функцией или функционалом координат процесса и управляющих воздействий. Требования к системе, как правило, противоречивы. В управлении техническими системами, наиболее распространенными являются различные интегральные критерии. Определяющим является показатель точности, который выражается через характеристики, описывающие стохастический характер реальных условий взаимодействия объекта и среды и зависящие от управления.

На данный момент в вариационном исчислении существует три задачи, выражающие критерий оптимальности — это задача Лагранжа, Больца, Маера. Задача Лагранжа является наиболее общей, однако, данные задачи взаимозаменяемы с точки зрения математических операций.

Основные методы, используемые в теории оптимизации, следующие: классическое вариационное исчисление, принцип максимума Понтрягина, динамическое программирование Беллмана, алгоритмы Винера-Колмогорова и Калмана-Бьюси, функциональный анализ, метрический анализ.

Для решения задач оптимального управления используют косвенные (аналитические) методы, а также прямые (численные)методы оптимизации. Прямые методы оптимизации — это методы математического (линейного) программирования, такие как симплекс-метод.

Косвенные методы оптимизации включают в себя методы дифференциального и интегрального исчисления, классическое вариационное исчисление, принцип максимума Понтрягина и метод динамического программирования Беллмана [3].

Для косвенных методов оптимизации ключевым является определение вида оптимальной функции и её структуры на основе необходимых условий оптимальности.

Таким образом, теория оптимизации и математический аппарат, применяемый в методах решения задач оптимального управления предполагает формализацию цели и ограничений для каждой задачи. Выбор критерия оптимальности, как единого показателя проектирования, способствует структурированию и формированию определенного алгоритма синтеза.

В целом, основные этапы построения оптимальных систем состоят в следующем [5]: составление номинальной модели, моделирование САУ, формирование критерия оптимальности, определение оптимальных управляющих воздействий, синтез регулятора.

Так, принцип максимума Понтрягина [1,2,5] позволяет создать САУ оптимальную по быстродействию, при этом, используя данный метод и имея дополнительную задачу, например, оптимизация тепловых потерь, появляется ограничение по оптимальному току, которое замедляет время регулирования. Таким образом, задача проектирования оптимальной САУ — это задача синтеза. Так, для детерминированных и стохастических систем применяется рассмотренная методология, но с некоторыми изменениями. Говоря о непрерывных детерминированных системах, для нахождения оптимального программного управления применяется принцип максимума, при наличии полной обратной связи — уравнение Беллмана. Синтез детерминированной оптимальной САУ с неполной обратной связью предполагает нахождение и применение синтезирующей функции. Предполагается, что при управлении используется информация только о времени и о компонентах вектора , то есть управление , применяемое в каждый момент времени , имеет управления с неполной обратно связью по вектору состояния [4].

Задача синтеза детерминированной оптимальной САУ с неполной обратной связью [4, c. 389]

Рис. 2. Задача синтеза детерминированной оптимальной САУ с неполной обратной связью [4, c. 389]

Для стохастических непрерывных САУ существует стохастический принцип Максимума, для систем совместного оценивания и управления также предполагается синтез наблюдателя [1,2,3,4]. При решении практических задач часто встречаются случаи, когда часть переменных вектора состояния оказываются неизмеримыми. Если имеется математическая модель системы, то можно вычислить ее состояние по наблюдаемым входам и выходам. Восстановление вектора состояния называется его оценкой, а устройство, обеспечивающее получение оценки по измерениям управления

и вектора выхода на конечном интервале времени, — наблюдателем. САУ с наблюдателем может быть представлена разной структурой. На рисунке 4. представлена структура САУ, в которой по измерениям производится оценка вектора состояния, используемого в управлении

Структура САУ с накоплением информации о состоянии [4]

Рис. 3. Структура САУ с накоплением информации о состоянии [4]

Синтез оптимальных дискретных стохастических систем основан на уравнениях фильтра Калмана для дискретных линейных систем, обеспечивающего нахождение оптимальной оценки вектора состояния модели объекта управления с минимальной нормой ковариационной матрицы ошибки оценивания и на соотношениях определения оптимального управленяи линейной дискретной детерминированной системы при полной информации о векторе состояния [1,4].

Таким образом синтез оптимальных САУ зависит от структуры и характеристик системы. Методы проектирования регуляторов, разработанные для малых областей фазового пространства (вблизи траекторий, соответствующих номинальным режимам), являются неприемлемыми применительно к большим областям фазового пространства в случае нелинейных систем [5]. На практике, существует несколько основных проблем, которые решаются, но требуют определенного внимания при синтезе САУ.

  1. Формирование значимого на языке математике критерия качества из различных требований проектирования c учетом возможной чувствительности критерия качества к ошибочным предположениям для адаптивных систем, многосвязных объектов и др. [1,5];
  2. Для нелинейных оптимальных адаптивных систем, актуальна задача упрощения расчета алгоритма управления.
  3. Синтез оптимальных цифровых регуляторов и методика перехода от непрерывной системы к цифровой.

Литература:

1. Афанасьев В. Н. Математическая теория конструирования систем управления: Учеб. для вузов. / В. Н. Афанасьев, В. Б. Колмановский, В. Р. Носов. — з-е изд., испр. И доп. — М.: Высш. Шк., 2003. — 614 с.

2. Деменков Н. П. Вычислительные методы решения задач оптимального управления на основе принципа максимума Понтрягина: учебное пособие / Н. П. Деменков. — Москва: Издательство МГТУ им. Н. Э. Баумана, 2015. — 75с.

3. Деменков Н. П., Микрин Е. А. Управление в технических системах: учебник / Н. П. Деменков, Е. А. Микрин. — Москва: Издательство МГТУ им. Н. Э. Баумана, 2017. -452с.

4. Пантелеев А. В. Теория управления в примерах и задачах: Учеб. Пособие / А. В. Пантелеев, А. С. Бортаковский. — М.: Высш. Шк., 2003. — 583 с.

5. Шурыгин Ю. А., Карпов А. Г. Современные проблемы теории управления. — Томск: Изд-во Том. Ун-та, 2017. — 80с.

Основные термины (генерируются автоматически): оптимальное управление, система, принцип максимума, вариационное исчисление, САУ, управление, задача, решение задач, детерминированная оптимальная САУ, динамическое программирование.


Ключевые слова

оптимальные САУ, классификационные признаки оптимальных САУ, методы синтеза и анализа

Похожие статьи

Сравнительный анализ численного решения задач оптимального...

Задача оптимального управления (1) — (3) с помощью принципа максимума может быть сведена к решению краевой задачи системы дифференциальных уравнений 2n-го порядка. Введем мерный вектор сопряженных переменных (импульсов) и функцию Гамильтона

Динамическое программирование в решении задачи...

Ключевые слова: Динамическое программирование, принцип оптимальности Р. Беллмана, сетевая

Динамическое программирование возникло в 1951–1953 годах благодаря работам Р

Пусть шаговое управление на этапе, , n — количество этапов. Решение задачи сводится к

Динамическое программирование определяет оптимальное решение n-мерных задач...

Организация решения задач динамического программирования

Ключевые слова: динамическое программирование, задачи оптимальной стратегии

В задачах, решаемых методом динамического программирования, процесс управления

В данной статье решаются три задачи динамического программирования из книги [1].

2.1. Оптимальная стратегия замены оборудования. Одной из важных экономических задач...

К задаче об оптимальной стабилизации управляемых систем...

Задача об оптимальной стабилизации тесно смыкается с общей задачей об устойчивости

Ведь, как известно, задача об оптимальной стабилизации движения управляемой системы

с соответствующим выражением Беллмана в методе динамического программирования.

6. Павликов С. В., Савин И. А., Емельянов Д. В. К методу функционалов Ляпунова в задаче об...

Реализация численного алгоритма метода вариаций...

Ключевые слова: метод вариаций, оптимальное управление, численное решение.

1. Интегрируя систему (1) при с начальными условиями (2) в интервале , вычисляем значение критерия I. Запоминаем

5. Федоренко Р. П. Приближенное решение задач оптимального управления.

Организация решения задач динамического программирования.

Математическая модель управления обучением и её решение...

Математическое моделирование социальных процессов, решение задач оптимального управления и планирования приобретают всё большую актуальность в настоящее время в самых разнообразных сферах человеческой деятельности ([1], [2], [3]).

Применение математического пакета Maple к решению...

...подготовки «Прикладная информатика» при изучении дисциплины «Теория оптимального управления».

Поэтому при решении подобных задач мы применили систему компьютерной математики

Пример 1. Найти расстояние между параболой и прямой . Решение: Эта задача с

− М.: Физматлит, 1961. Краснов, М. Л. Вариационное исчисление: задачи и упражнения...

Методы математического программирования при разработке...

Ключевые слова: авиакомпания, аэропорт, автоматическая система управления, задачи

Большую часть задач оптимизации на транспорте представляют собой задачи линейного

Например, задача об оптимальной загрузке самолета несколькими типами грузов, задача об

— Целочисленная задача линейного программирования ориентирована на решение задач, в...

Методы синтеза систем автоматического управления

Под синтезом системы автоматического управления В. Бесекерский определяет

С первой точки зрения синтез интерпретируется в качестве задачи вариационного исчисления.

Вторая точка зрения следующая: синтез также можно трактовать как инженерную задачу.

Решение задачи такого типа будет заключаться в обеспечении оптимальных переходных...

Похожие статьи

Сравнительный анализ численного решения задач оптимального...

Задача оптимального управления (1) — (3) с помощью принципа максимума может быть сведена к решению краевой задачи системы дифференциальных уравнений 2n-го порядка. Введем мерный вектор сопряженных переменных (импульсов) и функцию Гамильтона

Динамическое программирование в решении задачи...

Ключевые слова: Динамическое программирование, принцип оптимальности Р. Беллмана, сетевая

Динамическое программирование возникло в 1951–1953 годах благодаря работам Р

Пусть шаговое управление на этапе, , n — количество этапов. Решение задачи сводится к

Динамическое программирование определяет оптимальное решение n-мерных задач...

Организация решения задач динамического программирования

Ключевые слова: динамическое программирование, задачи оптимальной стратегии

В задачах, решаемых методом динамического программирования, процесс управления

В данной статье решаются три задачи динамического программирования из книги [1].

2.1. Оптимальная стратегия замены оборудования. Одной из важных экономических задач...

К задаче об оптимальной стабилизации управляемых систем...

Задача об оптимальной стабилизации тесно смыкается с общей задачей об устойчивости

Ведь, как известно, задача об оптимальной стабилизации движения управляемой системы

с соответствующим выражением Беллмана в методе динамического программирования.

6. Павликов С. В., Савин И. А., Емельянов Д. В. К методу функционалов Ляпунова в задаче об...

Реализация численного алгоритма метода вариаций...

Ключевые слова: метод вариаций, оптимальное управление, численное решение.

1. Интегрируя систему (1) при с начальными условиями (2) в интервале , вычисляем значение критерия I. Запоминаем

5. Федоренко Р. П. Приближенное решение задач оптимального управления.

Организация решения задач динамического программирования.

Математическая модель управления обучением и её решение...

Математическое моделирование социальных процессов, решение задач оптимального управления и планирования приобретают всё большую актуальность в настоящее время в самых разнообразных сферах человеческой деятельности ([1], [2], [3]).

Применение математического пакета Maple к решению...

...подготовки «Прикладная информатика» при изучении дисциплины «Теория оптимального управления».

Поэтому при решении подобных задач мы применили систему компьютерной математики

Пример 1. Найти расстояние между параболой и прямой . Решение: Эта задача с

− М.: Физматлит, 1961. Краснов, М. Л. Вариационное исчисление: задачи и упражнения...

Методы математического программирования при разработке...

Ключевые слова: авиакомпания, аэропорт, автоматическая система управления, задачи

Большую часть задач оптимизации на транспорте представляют собой задачи линейного

Например, задача об оптимальной загрузке самолета несколькими типами грузов, задача об

— Целочисленная задача линейного программирования ориентирована на решение задач, в...

Методы синтеза систем автоматического управления

Под синтезом системы автоматического управления В. Бесекерский определяет

С первой точки зрения синтез интерпретируется в качестве задачи вариационного исчисления.

Вторая точка зрения следующая: синтез также можно трактовать как инженерную задачу.

Решение задачи такого типа будет заключаться в обеспечении оптимальных переходных...

Задать вопрос